Journal of Solid State Electrochemistry

, Volume 22, Issue 10, pp 3255–3260 | Cite as

A humidity-sensitive nanocomposite solid ion conductor: sulfonated poly-ether-ether-ketone in nanotubular TiO2 or ZrO2 matrix

  • O. Ruzimuradov
  • M. Braglia
  • F. Vacandio
  • P. Knauth
Original Paper


A nanocomposite solid ion conductor was prepared by infiltrating zirconia or titania nanotube arrays, made by electrochemical anodization of Zr or Ti metal, with proton-conducting sulfonated poly(ether-ether-ketone) (SPEEK) ionomer. The resulting material was characterized using scanning electron microscopy, X-ray diffraction, and infrared spectroscopy showing the successful filling of the nanotubular matrix with the ionomer. Impedance spectroscopy revealed a conductivity increase by several orders of magnitude after infiltration; furthermore, the impedance of the TiO2nt-SPEEK nanocomposite is very sensitive to the relative humidity. Possible applications of these ionic conducting nanocomposites include solid-state humidity sensors or heterogeneous catalytic materials.

Graphical abstract


Nanocomposite materials Polymer electrolytes Proton conductivity Humidity sensing 



O.R. acknowledges the European Union Erasmus Mundus Master Program MESC (Materials for Energy Storage and Conversion) for a Visiting Scholarship under which the present study was carried out.

The authors want to express their gratitude to Amélie Démoulin for help with the SEM observations.


  1. 1.
    Gellings PJ, Bouwmeester HJM (1997) Handbook of solid state electrochemistry. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Kudo T, Fueki K (1990) Solid state ionics. Kodansha-VCH, TokyoGoogle Scholar
  3. 3.
    Rickert H (1982) Electrochemistry of solids. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Yao YFY, Kummer JT (1967) Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem 29(9):2453–2466CrossRefGoogle Scholar
  5. 5.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458CrossRefGoogle Scholar
  6. 6.
    Sata N, Eberman K, Eberl K, Maier J (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408(6815):946–949CrossRefPubMedGoogle Scholar
  7. 7.
    Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gosele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296(5575):1997–1997. CrossRefPubMedGoogle Scholar
  8. 8.
    Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29(7):699–766. CrossRefGoogle Scholar
  9. 9.
    Wang XX, Zhao JL, Hou XR, He Q, Tang CC (2012) Catalytic activity of ZrO2 nanotube arrays prepared by anodization method. J Nanomater 5:1–5. CrossRefGoogle Scholar
  10. 10.
    Roziere J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33(1):503–555. CrossRefGoogle Scholar
  11. 11.
    Kreuer KD (1997) On the development of proton conducting materials for technological applications. Solid State Ionics 97(1–4):1–15. CrossRefGoogle Scholar
  12. 12.
    Di Vona ML, Knauth P (2013) Sulfonated aromatic polymers as proton-conducting solid electrolytes for fuel cells: a short review. Zeitschrift Fur Physikalische Chemie-Int J Res Phys Chem Chem Phys 227(5):595–614. CrossRefGoogle Scholar
  13. 13.
    Knauth P, Di Vona ML (2012) Solid proton conductors: properties and applications in fuel cells. Wiley, ChichesterCrossRefGoogle Scholar
  14. 14.
    Vacandio F, Eyraud M, Chassigneux C, Knauth P, Djenizian T (2010) Electrochemical synthesis and characterization of zirconia nanotubes grown from Zr thin films. J Electrochem Soc 157(12):K279–K283. CrossRefGoogle Scholar
  15. 15.
    Premchand YD, Djenizian T, Vacandio F, Knauth P (2006) Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces. Electrochem Commun 8(12):1840–1844. CrossRefGoogle Scholar
  16. 16.
    Fang D, Yu JG, Luo ZP, Liu SQ, Huang KL, Xu WL (2012) Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization. J Solid State Electrochem 16(3):1219–1228. CrossRefGoogle Scholar
  17. 17.
    Stepien M, Handzlik P, Fitzner K (2014) Synthesis of ZrO2 nanotubes in inorganic and organic electrolytes by anodic oxidation of zirconium. J Solid State Electrochem 18(11):3081–3090. CrossRefGoogle Scholar
  18. 18.
    Sowa M, Lastowka D, Kukharenko AI, Korotin DM, Kurmaev EZ, Cholakh SO, Simka W (2017) Characterisation of anodic oxide films on zirconium formed in sulphuric acid: XPS and corrosion resistance investigations. J Solid State Electrochem 21(1):203–210. CrossRefGoogle Scholar
  19. 19.
    Guo LM, Zhao JL, Wang XX, Xu RQ, Li YX (2009) Synthesis and growth mechanism of zirconia nanotubes by anodization in electrolyte containing Cl. J Solid State Electrochem 13(9):1321–1326. CrossRefGoogle Scholar
  20. 20.
    Sakai T, Kim SJ, Kajitani S, Hamagami J, Oda H, Matsuka M, Ishihara T, Matsumoto H (2012) Proton conduction properties of nano-titania modified by sulfuric acid impregnation. J Solid State Electrochem 16(6):2055–2059. CrossRefGoogle Scholar
  21. 21.
    Zhong P, Liao YL, Que WX, Jia QY, Lei TM (2014) Enhanced electron collection in photoanode based on ultrafine TiO2 nanotubes by a rapid anodization process. J Solid State Electrochem 18(8):2087–2098. CrossRefGoogle Scholar
  22. 22.
    Li Q, Xia ZB, Wang SM, Zhang YJ, Zhang YH (2017) The preparation and characterization of electrochemical reduced TiO2 nanotubes/polypyrrole as supercapacitor electrode material. J Solid State Electrochem 21(8):2177–2184. CrossRefGoogle Scholar
  23. 23.
    Vacandio F, Eyraud M, Knauth P, Djenizian T (2011) Tunable electrical properties of self-organized zirconia nanotubes. Electrochem Commun 13(10):1060–1062. CrossRefGoogle Scholar
  24. 24.
    Hanzu I, Djenizian T, Knauth P (2011) Electrical and point defect properties of TiO2 nanotubes fabricated by electrochemical anodization. J Phys Chem C 115(13):5989–5996. CrossRefGoogle Scholar
  25. 25.
    Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Wang KP, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci 229(1–2):95–106. CrossRefGoogle Scholar
  26. 26.
    Di Vona ML, Sgreccia E, Licoccia S, Alberti G, Tortet L, Knauth P (2009) Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes. J Phys Chem B 113(21):7505–7512. CrossRefPubMedGoogle Scholar
  27. 27.
    Di Vona ML, Pasquini L, Narducci R, Pelzer K, Donnadio A, Casciola M, Knauth P (2013) Cross-linked sulfonated aromatic ionomers via SO2 bridges: conductivity properties. J Power Sources 243:488–493. CrossRefGoogle Scholar
  28. 28.
    Steinhart M, Wehrspohn RB, Gosele U, Wendorff JH (2004) Nanotubes by template wetting: a modular assembly system. Angew Chem Int Ed 43(11):1334–1344. CrossRefGoogle Scholar
  29. 29.
    Di Vona ML, Alberti G, Sgreccia E, Casciola M, Knauth P (2012) High performance sulfonated aromatic ionomers by solvothermal macromolecular synthesis. Int J Hydrog Energy 37(10):8672–8680CrossRefGoogle Scholar
  30. 30.
    Di Vona ML, Luchetti L, Spera GP, Sgreccia E, Knauth P (2008) Synthetic strategies for the preparation of proton-conducting hybrid polymers based on PEEK and PPSU for PEM fuel cells. C R Chim 11(9):1074–1081. CrossRefGoogle Scholar
  31. 31.
    Kaliaguine S, Mikhailenko SD, Wang KP, Xing P, Robertson G, Guiver M (2003) Properties of SPEEK based PEMs for fuel cell application. Catal Today 82(1–4):213–222. CrossRefGoogle Scholar
  32. 32.
    Zhao JL, Wang XX, Xu RQ, Meng FB, Guo LM, Li YX (2008) Fabrication of high aspect ratio zirconia nanotube arrays by anodization of zirconium foils. Mater Lett 62(29):4428–4430. CrossRefGoogle Scholar
  33. 33.
    Marani D, Di Vona ML, Traversa E, Licoccia S, Beurroies I, Llewellyn PL, Knauth P (2006) Thermal stability and thermodynamic properties of hybrid proton-conducting polyaryl etherketones. J Phys Chem B 110(32):15817–15823. CrossRefPubMedGoogle Scholar
  34. 34.
    Doan J, Kingston E, Kendrick I, Anderson K, Dimakis N, Knauth P, Di Vona ML, Smotkin ES (2014) Theoretical and experimental infrared spectra of hydrated and dehydrated sulfonated poly(ether ether ketone). Polymer 55(18):4671–4676. CrossRefGoogle Scholar
  35. 35.
    Bauer B, Jones DJ, Roziere J, Tchicaya L, Alberti G, Casciola M, Massinelli L, Peraio A, Besse S, Ramunni E (2000) Electrochemical characterisation of sulfonated polyetherketone membranes. J New Mater Electrochem Syst 3(2):93–98Google Scholar
  36. 36.
    Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110-160 degrees C). J Membr Sci 185(1):73–81CrossRefGoogle Scholar
  37. 37.
    Knauth P, Di Vona ML (2012) Sulfonated aromatic ionomers: analysis of proton conductivity and proton mobility. Solid State Ionics 225:255–259. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS, Madirel (UMR 7246), Electrochemistry of Materials GroupAix Marseille UniversityMarseilleFrance
  2. 2.Department of Natural and Mathematic SciencesTurin Polytechnic University in TashkentTashkentUzbekistan
  3. 3.International Associated Laboratory (L.I.A.) Ionomer Materials for Energy (Aix Marseille University, CNRS, Univ. Rome Tor Vergata)MarseilleFrance
  4. 4.International Associated Laboratory (L.I.A.) Ionomer Materials for Energy (Aix Marseille University, CNRS, Univ. Rome Tor Vergata)RomeItaly

Personalised recommendations