Advertisement

Facile and scalable fabrication of graphene/polypyrrole/MnOx/Cu(OH)2 composite for high-performance supercapacitors

  • Hoda Nourmohammadi Miankushki
  • Arman Sedghi
  • Saeid Baghshahi
Original Paper
  • 19 Downloads

Abstract

In this study, to improve the specific capacitance of graphene-based supercapacitor, novel quadri composite of G/PPy/MnOx/Cu(OH)2 was synthesized by using a facile and inexpensive route. First, a two-step method consisting of thermal decomposition and in situ oxidative polymerization was employed to fabricate graphene/polypyrrole/manganese oxide composites. Second, Cu(OH)2 nanowires were deposited on Cu foil. Afterwards, for the electrochemical measurements, composite powders were deposited on Cu(OH)2/Cu foil substrate as working electrodes. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. The XRD analysis revealed the formation of PPy/graphene, Mn3O4/graphene, and graphene/polypyrrole/MnOx. In addition, the presence of polypyrrole and manganese oxides was confirmed using FT-IR and Raman spectroscopies. Graphene/polypyrrole/MnOx/Cu(OH)2 electrode showed the best electrochemical performance and exhibited the largest specific capacitance of approximately 370 F/g at the scan rate of 10 mV/s in 6 M KOH electrolyte. In addition, other electrochemical measurements (charge–discharge, EIS and cyclical performance) of the G/Cu(OH)2, G/PPy/Cu(OH)2, G/Mn3O4/Cu(OH)2, and G/PPy/MnOx/Cu(OH)2 electrodes suggested that the G/PPy/MnOx/Cu(OH)2 composite electrode is promising materials for supercapacitor application.

Keywords

Polypyrrole Graphene MnOx Cu(OH)2/Cu foil, composites, supercapacitor 

References

  1. 1.
    Wang Z, Ma CY, Wang HL, Liu ZH, Hao ZP (2013) Facilely synthesized Fe2O3–graphene nanocomposite as novel electrode materials for supercapacitors with high performance. J Alloys Comp 552:486–491CrossRefGoogle Scholar
  2. 2.
    Xiang C, Li M, Zhi M, Manivannan A, Wu NQ (2012) Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J Mater Chem A 22:19161–19167CrossRefGoogle Scholar
  3. 3.
    Chen T, Dai L (2014) Flexible supercapacitors based on carbon nanomaterials. J Mater Chem A 2(28):10756–10775CrossRefGoogle Scholar
  4. 4.
    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173CrossRefGoogle Scholar
  5. 5.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62CrossRefGoogle Scholar
  6. 6.
    Wu ZS, Feng XL, Cheng HM (2013) Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat Commun 4(1):2487–2495CrossRefGoogle Scholar
  7. 7.
    Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X, Tan G, Wen Y, Wang F (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5(19):9508–9516CrossRefGoogle Scholar
  8. 8.
    Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196(4):2393–2397CrossRefGoogle Scholar
  9. 9.
    Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257CrossRefGoogle Scholar
  10. 10.
    Niu L, Wang J, Hong W, Sun J, Fan Z, Ye X, Wang H, Yang S (2014) Solvothermal synthesis of Ni/reduced graphene oxide composites as electrode material for supercapacitors. Electrochim Acta 123:560–568CrossRefGoogle Scholar
  11. 11.
    Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G (2013) A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim Acta 90:210–218CrossRefGoogle Scholar
  12. 12.
    Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRefGoogle Scholar
  13. 13.
    Lima FHB, Salgado JRC, Gonzalez ER, Ticianelli EA (2007) Electrochatalytic properties of PtCo/C and PtNi/C alloys for the oxygen Reduction in Alkaline solution. J Electrochem Soc 154:369–375Google Scholar
  14. 14.
    Gómez-Navarro C, Thomas Weitz R, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503CrossRefGoogle Scholar
  15. 15.
    Du H, Jiao L, Cao K, Wang Y, Yuan H (2013) Polyol-mediated synthesis of mesoporous α-Ni(OH)2 with enhanced supercapacitance. ACS Appl Mater Interfaces 5(14):6643–6648CrossRefGoogle Scholar
  16. 16.
    Wang L, Dong ZH, Wang ZG, Zhang FX, Jin J (2013) Advanced functional materials. Adv Funct Mater 23(21):2758–2764CrossRefGoogle Scholar
  17. 17.
    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5(19):8879–8883CrossRefGoogle Scholar
  18. 18.
    Sutter RW, Flege J, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7(5):406–411CrossRefGoogle Scholar
  19. 19.
    Yang RM, Kwon H, Park HK, Do YR, Lee SB, Yim S (2014) Coaxial RuO2–ITO nanopillars for transparent supercapacitor application. Langmuir 30:1704–1709CrossRefGoogle Scholar
  20. 20.
    Gu XY, Yang Y, Hu Y, Hu M, Huang J, Wang CY (2015) Facile fabrication of graphene–polypyrrole–Mn composites as high-performance electrodes for capacitive deionization. J Mater Chem A 3(11):5866–5874CrossRefGoogle Scholar
  21. 21.
    Li ZP, Mi YJ, Liu XH, Liu S, Yang SR, Wang JQ (2011) Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21(38):14706–14711CrossRefGoogle Scholar
  22. 22.
    Lv W, Sun F, Tang DM, Fang HT, Liu C, Yang QH, Cheng HM (2011) A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J Mater Chem 21(25):9014–9019CrossRefGoogle Scholar
  23. 23.
    Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN (2014) In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells. Sci Rep 4(1):5305.  https://doi.org/10.1038/srep05305 CrossRefGoogle Scholar
  24. 24.
    Ye SB, Feng JC (2014) Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS Appl Mater Interfaces 6:9671–9679CrossRefGoogle Scholar
  25. 25.
    Ramphal A, Hagerman ME (2015) Water-processable laponite/polyaniline/graphene oxide nanocomposites for energy applications. Langmuir 31(4):1505–1515CrossRefGoogle Scholar
  26. 26.
    Chen Z, Yu DS, Xiong W, Liu PP, Liu Y, Dai LM (2014) Graphene-based nanowire supercapacitors. Langmuir 30(12):3567–3571CrossRefGoogle Scholar
  27. 27.
    Wang K, Meng QH, Zhang YJ, Wei ZX, Miao MH (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25(10):1494–1498CrossRefGoogle Scholar
  28. 28.
    Yang PH, Ding Y, Lin ZY, Chen ZW, Li YZ, Qiang PF, Ebrahimi M, Mai WJ, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736CrossRefGoogle Scholar
  29. 29.
    Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136(39):13925–13931CrossRefGoogle Scholar
  30. 30.
    Tao JY, Liu NS, Li LY, Sua J, Gao YH (2014) Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 6(5):2922–2928CrossRefGoogle Scholar
  31. 31.
    Zhang X, Zeng XZ, Yang M, Qi YX (2014) Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl Mater Interfaces 6(2):1125–1130CrossRefGoogle Scholar
  32. 32.
    Li PX, Yang YB, Shi EZ, Shen QC, Shang YY, Wu ST, Wei JQ, Wang KL, Zhu HW, Yuan Q, Cao AY, Wu DH (2014) Core-duble -shell, carbon nanotube/polypyrrole/MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater interface 6(7):5228–5234Google Scholar
  33. 33.
    Jiang LL, Lu X, Xie CM, Wan GJ, Zhang HP, Tang YH (2015) Flexible, free-standing TiO2–graphene–polypyrrole composite films as electrodes for supercapacitors. J Phys Chem C 119(8):3903–3910CrossRefGoogle Scholar
  34. 34.
    Tang PY, Han LJ, Zhang L (2014) Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 6(13):10506–10515CrossRefGoogle Scholar
  35. 35.
    Wang B, He XY, Li HP, Liu Q, Wang J, Yu L, Yan HJ, Li ZS, Wang P (2014) Optimizing the charge transfer process by designing Co3O4@PPy@MnO2 ternary core–shell composite. J Mater Chem A 2(32):12968–12973CrossRefGoogle Scholar
  36. 36.
    Xu DD, Xu Q, Wang KX, Chen J, Chen ZM (2014) Fabrication of free-standing hierarchical carbon nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl Mater Interfaces 6(1):200–209CrossRefGoogle Scholar
  37. 37.
    Chakrabarti MH, Low CTJ, Brandon NP, Yufit V, Hashim MA, Irfan MF, Akhtar J, Ruiz-Trejo E, Hussain MA (2013) Progress in the electrochemical modifica-tion of graphene-based materials and their applications. Electrochim Acta 107:425–440CrossRefGoogle Scholar
  38. 38.
    Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196(14):5990–5996CrossRefGoogle Scholar
  39. 39.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502CrossRefGoogle Scholar
  40. 40.
    Yuan XX, Ding XL, Wang CY, Ma ZF (2013) Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci 6(4):1105–1124CrossRefGoogle Scholar
  41. 41.
    Bose S, Kim NH, Kuila T, Lau K, Lee JH (2011) Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nano technology 22:295202Google Scholar
  42. 42.
    Jiangying Q, Feng G, Quan Z, Zhiyu W, Han H, Beibei L, Wubo W, Xuzhen W, Jieshan Q (2013) Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale 5:2999–3005CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Ran W, Xiong DB, Zhang L, Xu J, Gao F (2014) Synthesis of Sn-doped Mn3O4/C nanocomposites as supercapacitor electrodes with remarkable capacity retention. Mater Lett 118:80–83CrossRefGoogle Scholar
  44. 44.
    Lee JW, Hall AS, Kim JD, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24(6):1158–1164CrossRefGoogle Scholar
  45. 45.
    Rosaiah P, Zhu J, Shaik Dadamiah PMD, Hussain OM, Qiu Y, Zhao L (2017) Reduced graphene oxide/Mn3O4 nanocomposite electrodes with enhanced electrochemical performance for energy storage applications. J Electroanal Chem.  https://doi.org/10.1016/j.jelechem.2017.04.008
  46. 46.
    Liao QY, Li SY, Cui H, Wang CH (2016) Vertically-aligned graphene@Mn3O4 nanosheets for a high-performance flexible all-solid-state symmetric supercapacitor. J Mater Chem A 4(22):8830–8836CrossRefGoogle Scholar
  47. 47.
    Cheekati SL, Yao Z, Huang H (2012) The impacts of graphene nanosheets and manganese valency on lithium storage characteristics in graphene/manganese oxide hybrid anode. J Nanomater 2012:1–10.  https://doi.org/10.1155/2012/819350 CrossRefGoogle Scholar
  48. 48.
    Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high- capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13(5):2078–2085CrossRefGoogle Scholar
  49. 49.
    Yu M, Zhai T, Lu X, Chen X, Xie S, Lie W, Liang C, Zhao W, Zhang L, Tong Y (2013) Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J Power Sources 239:64–71CrossRefGoogle Scholar
  50. 50.
    Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2011) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12:321–325CrossRefGoogle Scholar
  51. 51.
    Huang J, Xu P, Cao D, Zhou X, Yang S, Li Y (2014) Asymmetric supercapacitors based on b-Ni (OH)2 nanosheets and activated carbon with high energy density. J Power Sources 246:371–376CrossRefGoogle Scholar
  52. 52.
    Wang X, Chen C, Chen K, Chen H, Jun Yuan S (2016) MnO2 nanosheets-decorated CuO nanoneedles arrays@Cu foils for supercapacitors. Int J Electrochem Sci 11:3425–3435CrossRefGoogle Scholar
  53. 53.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRefGoogle Scholar
  54. 54.
    Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J, Tang J (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52CrossRefGoogle Scholar
  55. 55.
    Chowdhury AN, Azam MS, Aktaruzzaman M, Rahim A (2009) Oxidative and antibacterial activity of Mn3O4. J Hazard Mater 172:1229–1235CrossRefGoogle Scholar
  56. 56.
    Li Y, Gong J, He G, Deng Y (2011) Fabrication of polyaniline/titanium dioxide composite nanofibers for gas sensing application. Mater Chem Phys 129(1-2):477–482CrossRefGoogle Scholar
  57. 57.
    Fetisov VB, Kozhina GA, Ermakov AN, Fetisov AV, Miroshnikova EG (2007) Electrochemical dissolution of Mn3O4 in acid solutions. J Solid State Electrochem 11(9):1205–1210CrossRefGoogle Scholar
  58. 58.
    Yang Y, Zeng B, Liu J, Long Y, Li N, Wen Z, Jiang Y (2015) Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor. Mater Res Innov 20(2):92–98.  https://doi.org/10.1179/1433075X15Y.0000000021 CrossRefGoogle Scholar
  59. 59.
    Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical impedance studies. Graphene 2(02):81–87CrossRefGoogle Scholar
  60. 60.
    Liu YF, Yuan GH, Jiang ZH, Yao ZP (2014) Solvothermal synthesis of Mn3O4 nanoparticle/graphene sheet composites and their supercapacitive properties. J Nanomater.  https://doi.org/10.1155/2014/190529
  61. 61.
    Kang M, Kim JH, Yang W, Jung H (2014) Synthesis and characterization of Mn3O4-graphene nanocomposite thin film by an ex situ approach. Bull Kor Chem Soc 35(4):1067–1072CrossRefGoogle Scholar
  62. 62.
    Xu P, Ye K, Du M, Liu J, Cheng K, Yin J, Wang G, Cao D (2015) One-step synthesis of copper compounds on copper foil and their supercapacitive performance. RSC Adv 5(46):36656–36664CrossRefGoogle Scholar
  63. 63.
    Chen J, Xu J, Zhou S, Zhao N, Wong CP (2015) Facile and scalable fabrication of three dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J Mater Chem A 3(33):17385–17391CrossRefGoogle Scholar
  64. 64.
    Yuan RM, Li HJ, Yin XM, Lu JH, Zhang L (2017) 3D CuO nanosheet wrapped nanofilm grown on Cu foil for highperformance non-enzymatic glucose biosensor electrode. Talanta 174:514–520CrossRefGoogle Scholar
  65. 65.
    Hsu YK, Chen YC, Lin YG (2012) Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J Electroanal Chem 673:43–47CrossRefGoogle Scholar
  66. 66.
    Ng CH, Lim HN, Lim YS, Chee WK, Huang NM (2015) Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energy Res 39(3):344–355CrossRefGoogle Scholar
  67. 67.
    Ren Y, Wang J, Huang XB, Ding JN (2015) The synthesis of polypyrrole@Mn3O4/reduced graphene oxide anode with improved coulombic efficiency. Electrochemical Acta 186:345–352CrossRefGoogle Scholar
  68. 68.
    Sun W, Chen L, Wang Y, Zhou Y, Meng S, Li H, Luo Y (2016) Synthesis of highly conductive PPy/graphene/MnO2 composite using ultrasonic irradiation. Synth React Inorg Met Org Nano Met Chem 46(3):437–444CrossRefGoogle Scholar
  69. 69.
    Fathi M, Saghafi M, Mahboubi F, Mohajerzadeh S (2014) Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synth Met 198:345–356CrossRefGoogle Scholar
  70. 70.
    Gunda GS, Dubalb DP, Patil a BH, Shindea SS, Lokhandea CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215CrossRefGoogle Scholar
  71. 71.
    de Oliveira HP, Sydlik SA, Swager T (2013) Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J Phys Chem C 117(20):10270–10276CrossRefGoogle Scholar
  72. 72.
    Gund Girish S, Dubal Deepak P, Patil Bebi H, Shindea Sujata S, Lokhandea Chandrakant D (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215CrossRefGoogle Scholar
  73. 73.
    Zhou T, Mo S, Zhou S, Zou W, Liu Y, Yuan D (2011) Mn3O4/worm-like mesoporous carbon synthesized via a microwave method for supercapacitors. J Mater Sci 46(10):3337–3342CrossRefGoogle Scholar
  74. 74.
    Zhu L, Zhang S, Cui Y, Song H, Chen X (2013) One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite. Electrochim Acta 89:18–23CrossRefGoogle Scholar
  75. 75.
    Fan Y, Zhang X, Liu Y, Cai Q, Zhang J (2013) One-pot hydrothermalsynthesisofMn3O4/graphene nanocomposite for supercapacitors. Mater Lett 95:153–156CrossRefGoogle Scholar
  76. 76.
    Zhou H, Yan Z, Yang X, Lv J, Kang L, Liu ZH (2016) RGO/MnO2/polypyrrole ternary film electrode for supercapacitor. Mater Chem Phys 177:40–47CrossRefGoogle Scholar
  77. 77.
    de Oliveira AHP, Nesciento MLF, de Oliveira HP (2016) Carbon nanotube @ MnO2@polypyrrole composites: chemical synthesis, characterization and application in supercapacitors. Mat Res 19(5):1080–1087.  https://doi.org/10.1590/1980-5373-MR-2016-0347 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hoda Nourmohammadi Miankushki
    • 1
  • Arman Sedghi
    • 1
  • Saeid Baghshahi
    • 1
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations