Skip to main content
Log in

Nanometric thin films of non-doped diamond-like carbon grown on n-type (P-doped) silicon substrates as electrochemical electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical response of thin non-doped diamond-like carbon films grown by pulsed laser deposition onto n-type (P-doped) silicon substrates was studied using different redox-active couples. The experiments were conducted as a function of the film thickness which can be controlled by the deposition time. It could be demonstrated that the film thickness greatly influences the electrochemical response and the electron transference rate at the surface, thus reaching an optimal response for films with a thickness of around 35 nm. This holds true for all redox couples studied. Those films show rather similar properties compared to boron-doped diamond electrodes, thus becoming an interesting coating to be studied as electrochemical electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lifshitz Y (1996) Hydrogen-free amorphous carbon films: correlation between growth conditions and properties. Diam Relat Mater 5(3-5):388–400

    Article  CAS  Google Scholar 

  2. Grill A (1999) Diamond-like carbon: state of the art. Diam Relat Mater 8(2-5):428–434

    Article  CAS  Google Scholar 

  3. Robertson J (1992) Properties of diamond-like carbon. Surf Coat Technol 50(3):185–203

    Article  CAS  Google Scholar 

  4. Tsai H (1990) Structure and physical properties of amorphous hydrogenated carbon (a-C:H) films. Mater Sci Forum 52–53:71–102

    Google Scholar 

  5. Nebel M, Neugebauer S, Kiesele H, Schuhmann W (2010) Local reactivity of diamond-like carbon modified PTFE membranes used in SO2 sensors. Electrochim Acta 55(27):7923–7928

    Article  CAS  Google Scholar 

  6. Petersen M, Bandorf R, Bräuer G, Klages CP (2012) Diamond-like carbon films as piezoresistors in highly sensitive force sensors. Diam Relat Mater 26:50–54

    Article  CAS  Google Scholar 

  7. Meškinis Š, Gudaitis R, Vasiliauskas A, Čiegis A, Šlapikas K, Tamulevičius T, Andrulevičius M, Tamulevičius S (2015) Piezoresistive properties of diamond like carbon films containing copper. Diam Relat Mater 60:20–25

    Article  CAS  Google Scholar 

  8. Virganavičius D, Cadarso VJ, Kirchner R, Stankevičius L, Tamulevičius T, Tamulevičius S, Schift H (2016) Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask. Appl Surf Sci 385:145–152

    Article  CAS  Google Scholar 

  9. Robertson SN, Gibson D, MacKay WG, Reid S, Williams C, Birney R (2016) Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf Coat Technol 314:72–78. https://doi.org/10.1016/j.surfcoat.2016.11.035

    Article  CAS  Google Scholar 

  10. Visbal H, Aihara Y, Ito S, Watanabe T, Park Y, Doo S (2016) The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics. J Power Sources 314:85–92

    Article  CAS  Google Scholar 

  11. Yang Y, Sun Q, Li YS, Li H, Fu ZW (2011) Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J Electrochem Soc 158(10):B1211–B1216

    Article  CAS  Google Scholar 

  12. Honda K, Nakahara A, Naragino H, Yoshinaga K (2013) High sensitive amperometric detection of glucose using conductive DLC electrode in higher potential region. ECS Electrochem Lett 2(6):B9–B11

    Article  CAS  Google Scholar 

  13. Liao TT, Zhang TF, Li SS, Deng QY, Wu BJ, Zhang YZ, Zhou YJ, Guo YB, Leng YX, Huang N (2016) Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. Mater Sci Eng C 69:751–759

    Article  CAS  Google Scholar 

  14. Kim JI, Bordeanu A, Pyun JC (2009) Diamond-like carbon (DLC) microelectrode for electrochemical ELISA. Biosens Bioelectron 24(5):1394–1398

    Article  CAS  PubMed  Google Scholar 

  15. Zeng A, Samper V, Tan SN, Poenar DP, Lim TM, Heng CK (2003) Potentiostatic deposition and detection of DNA on conductive nitrogen doped diamond-like carbon film electrode. TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference. https://doi.org/10.1109/SENSOR.2003.1215293

  16. Granger MC, Witek M, Xu J, Wang J, Hupert M, Hanks A, Koppang MD, Butler JE, Lucazeau G, Mermoux M, Strojek JW, Swain GM (2000) Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes. https://doi.org/10.1021/AC0000675

  17. Zeng A, Neto VF, Gracio JJ, Fan QH (2014) Diamond-like carbon (DLC) films as electrochemical electrodes. Diam Relat Mater 43:12–22

    Article  CAS  Google Scholar 

  18. Sopchak D, Miller B, Kalish R, Avyigal Y, Shi X (2002) Dopamine and ascorbate analysis at hydrodynamic electrodes of boron doped diamond and nitrogen incorporated tetrahedral amorphous carbon. Electroanalysis 14(7-8):473–478

    Article  CAS  Google Scholar 

  19. Protopopova V, Iyer A, Wester N, Kondrateva A, Sainio S, Palomäki T, Laurila T, Mishin M, Koskinen J (2015) Ultrathin undoped tetrahedral amorphous carbon films: the role of the underlying titanium layer on the electronic structure. Diam Relat Mater 57:43–52

    Article  CAS  Google Scholar 

  20. Protopopova VS, Wester N, Caro MA, Gabdullin PG, Palomäki T, Laurila T, Koskinen J (2015) Ultrathin undoped tetrahedral amorphous carbon films: thickness dependence of the electronic structure and implications for their electrochemical behaviour. Phys Chem Chem Phys 17(14):9020–9031

    Article  CAS  PubMed  Google Scholar 

  21. Sainio S, Nordlund D, Caro MA, Gandhiraman R, Koehne J, Wester N, Koskinen J, Meyyappan M, Laurila T (2016) Correlation between sp3-to-sp2 ratio and surface oxygen functionalities in tetrahedral amorphous carbon (ta-C) thin film electrodes and implications of their electrochemical properties. J Phys Chem C 120(15):8298–8304

    Article  CAS  Google Scholar 

  22. Palomäki T, Wester N, Caro MA, Sainio S, Protopopova V, Koskinen J, Laurila T (2017) Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films. Electrochim Acta 225:1–10

    Article  CAS  Google Scholar 

  23. Guzmán F, Favre M, Ruiz HM, Hevia S, Caballero LS, Wyndham ES, Bhuyan H, Flores M, Mändl S (2013) Pulsed laser deposition of thin carbon films in a neutral gas background. J Phys D Appl Phys 46(21):215202–215206

    Article  CAS  Google Scholar 

  24. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R Rep 37:129–281

    Article  Google Scholar 

  25. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans A Math Phys Eng Sci 362(1824):2477–2512

    Article  CAS  PubMed  Google Scholar 

  26. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys Rev B 64(7):75414

    Article  CAS  Google Scholar 

  27. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

  28. Hevia SA, Guzmán-Olivos F, Muñoz I, Muñoz-Cordovez G, Caballero-Bendixsen S, Ruiz HM, Favre M (2017) Nanostructured substrate effects on diamond-like carbon films properties grown by pulsed laser deposition. Surf Coat Technol 312:55–60

    Article  CAS  Google Scholar 

  29. Prawer S, Nugent KW, Lifshitz Y, Lempert GD, Grossman E, Kulik J, Avigal I, Kalish R (1996) Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diam Relat Mater 5(3-5):433–438

    Article  CAS  Google Scholar 

  30. Yang X, Haubold L, DeVivo G, Swain GM (2012) Electroanalytical performance of nitrogen-containing tetrahedral amorphous carbon thin-film electrodes. Anal Chem 84(14):6240–6248

    Article  CAS  PubMed  Google Scholar 

  31. Eckermann A, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254(15-16):1769–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals ans Applications. John Wiley & Sons

  33. Zeng A, Liu E, Tan SN, Zhang S, Gao J (2002) Cyclic voltammetry studies of sputtered nitrogen doped diamond-like carbon film electrodes. Electroanalysis 14(15-16):1110–1115

    Article  CAS  Google Scholar 

  34. Wakabayashi RH, Paik H, Murphy MJ, Schlom DG, Brützam M, Uecker R, van Dover RB, DiSalvo FJ, Abruña HD (2017) Rotating disk electrode voltammetry of thin films of novel oxide materials. J Electrochem Soc 164(14):H1154–H1160

    Article  CAS  Google Scholar 

  35. Neufeld AK, O’Mullan AP (2006) Effect of the mediator in feedback mode-based SECM interrogation of indium tin-oxide and boron-doped diamond electrodes. J Solid State Electrochem 10(10):808–816

    Article  CAS  Google Scholar 

  36. Holloway AF, Wildgoose GG, Compton RG, Shao L, Green MLH (2008) The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes. J Solid State Electrochem 12(10):1337–1348

    Article  CAS  Google Scholar 

  37. Liu X, Wang Y, Zhan L, Qiao W, Liang X, Ling L (2011) Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J Solid State Electrochem 15(2):413–419

    Article  CAS  Google Scholar 

  38. Tanaka Y, Furuta M, Kuriyama K, Kuwabara R, Katsuki Y, Kondo T, Fujishima A, Honda K (2011) Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods. Electrochim Acta 56(3):1172–1181

    Article  CAS  Google Scholar 

  39. Yagi I, Notsu H, Kondo T, Tryk DA, Fujishima A (1999) Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. Electroanal Chem 473(1-2):173–178

    Article  CAS  Google Scholar 

  40. Chen P, McCreery RL (1996) Electron transfer kinetics at modified carbon electrode surfaces: the role of specific surface sites. Anal Chem 68(22):3958–3965

    Article  CAS  Google Scholar 

Download references

Funding

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0384 and has been funded by the Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT 1161614 and 1141119. B. Durán acknowledges postdoctoral project FONDECYT 3170784. A. Rosenkranz gratefully acknowledges the financial support for his postdoctoral project given by CIENUC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hevia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hevia, S.A., Bejide, M., Duran, B. et al. Nanometric thin films of non-doped diamond-like carbon grown on n-type (P-doped) silicon substrates as electrochemical electrodes. J Solid State Electrochem 22, 2845–2853 (2018). https://doi.org/10.1007/s10008-018-4002-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4002-3

Keywords

Navigation