Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2631–2639 | Cite as

Effects of carbon coating from sucrose and PVDF on electrochemical performance of Li4Ti5O12/C composites in different potential ranges

  • I. A. Stenina
  • T. L. Kulova
  • A. M. Skundin
  • A. B. Yaroslavtsev
Original Paper
  • 49 Downloads

Abstract

The carbon coated nanoflower-like Li4Ti5O12/C composites were prepared via hydrothermal method followed by surface modification using sucrose or polyvinylidene fluoride (PVDF) as carbon sources. X-ray diffraction, SEM, TEM, Raman spectroscopy, TGA, and the electrochemical measurements were used for the materials characterization. Such modification leads to the formation of a high-conductive carbon coating. In the case of polyvinylidene fluoride use, fluorination of Li4Ti5O12 surface takes place also. As a result, electrochemical performance of the obtained composites is improved. In the potential range of 1–3 V, Li4Ti5O12, Li4Ti5O12/CPVDF, and Li4Ti5O12/Csucrose exhibit, respectively, the discharge capacities of 142.5, 154.3, and 170.4 mAh/g at a current of 20 mA/g and 57.2, 82.1, and 89.3mAh/g at a current of 3200 mA/g. When cycled in a potential range of 0.01–3 V, the discharge capacity of Li4Ti5O12/CPVDF increases up to 252 mAh/g at 20 mA/g.

Keywords

Lithium titanate Anode materials Lithium-ion battery Carbon coating Polyvinylidene fluoride 

Notes

Funding information

This work was supported by the Russian Foundation for Basic Research (project no. 16-29-05241).

Supplementary material

10008_2018_3978_MOESM1_ESM.doc (122 kb)
ESM 1 (DOC 121kb)

References

  1. 1.
    Lin X, Pan F, Wan H (2014) Progress of Li4Ti5O12 anode material for lithium ion batteries. Mater Technol Adv Func Mater 29:A82–A87Google Scholar
  2. 2.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62CrossRefGoogle Scholar
  3. 3.
    Lu J, Nan C, Peng Q, Li Y (2012) Single crystalline lithium titanate nanostructure with enhanced rate performance for lithium ion battery. J Power Sources 202:246–252CrossRefGoogle Scholar
  4. 4.
    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for li ion batteries. Chem Rev 113(7):5364–5457CrossRefGoogle Scholar
  5. 5.
    Yaroslavtsev AB, Kulova TL, Skundin AM (2015) Electrode nanomaterials for lithium-ion batteries. Russ Chem Rev 84(8):826–852CrossRefGoogle Scholar
  6. 6.
    Yao XL, Xie S, Nian HQ, Chen CH (2008) Spinel Li4Ti5O12 as a reversible anode material down to 0 V. J Alloys Comp 465(1-2):375–379CrossRefGoogle Scholar
  7. 7.
    Kulova TL, Kreshchenova YM, Kuz’mina AA, Skundin AM, Stenina IA, Yaroslavtsev AB (2016) New high-capacity anode materials based on gallium-doped lithium titanate. Mendeleev Commun 26(3):238–239CrossRefGoogle Scholar
  8. 8.
    Zhao B, Ran R, Liu M, Shao Z (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Engineer R 98:1–71CrossRefGoogle Scholar
  9. 9.
    Yi TF, Yang SY, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3(11):5750–5777CrossRefGoogle Scholar
  10. 10.
    Wang L, Xiao Q, Li Z, Lei G, Zhang P, Wu L (2012) Synthesis of Li4Ti5O12 fibers as a high-rate electrode material for lithium-ion batteries. J Solid State Electrochem 16(10):3307–3313CrossRefGoogle Scholar
  11. 11.
    Fang W, Cheng X, Zuo P, Ma Y, Yin G-P (2013) Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries. Solid State Ionics 244:52–56CrossRefGoogle Scholar
  12. 12.
    Cheng L, Yan J, Zhu G-N, Luo J-Y, Wang C-X, Xia Y-Y (2010) General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Mater Chem A 20(3):595–602CrossRefGoogle Scholar
  13. 13.
    Hong S-A, Lee SB, Joo O-S, Kang JW, Cho B-W, Lim J-S (2016) Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries. J Mater Sci 51(13):6220–6234CrossRefGoogle Scholar
  14. 14.
    Wang R, Wang J, Qiu T, Chen L, Liu H, Yang W (2012)Effects of different carbon sources on the electrochemical properties of Li4Ti5O12/C composites.Electrochim Acta70:84–90CrossRefGoogle Scholar
  15. 15.
    Hu X, Lin Z, Yang K, Huai Y, Deng Z (2011) Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction. Electrochim Acta 56(14):5046–5053CrossRefGoogle Scholar
  16. 16.
    Guo X, Wang C, Chen M, Wang J, Zheng J (2012) Carbon coating of Li4Ti5O12using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. J Power Sources 214:107–112CrossRefGoogle Scholar
  17. 17.
    Li X, Qu M, Yo H, Yu Z (2010) Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochim Acta 55(8):2978–2982CrossRefGoogle Scholar
  18. 18.
    Ni H, Song W-L, Fan L-Z (2014) A strategy for scalable synthesis of Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries. Electrochem Commun 40:1–4CrossRefGoogle Scholar
  19. 19.
    Pawlitzek F, Pampel J, Schmuck M, Althues H, Schumm B, Kaskel S (2016) High-power lithium ion batteries based on preorganized necklace type Li4Ti5O12/VACNT nano-composites. J Power Sources 325:1–6CrossRefGoogle Scholar
  20. 20.
    Huang J, Jiang Z (2008) The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim Acta 53(26):7756–7759CrossRefGoogle Scholar
  21. 21.
    Zhao Z, Xu Y, Ji M, Zhang H (2013) Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650CrossRefGoogle Scholar
  22. 22.
    Gryzlov D, Novikova S, Kulova T, Skundin A, Yaroslavtsev (2016) A behavior of LiFePO4/CPVDF/Ag-based cathode materials obtained using polyvinylidene fluoride as the carbon source. Mater Design 104:95–101CrossRefGoogle Scholar
  23. 23.
    Nakajima T, Gupta V, Ohzawa Y, Koh M, Singh RN, Tressaud A, Durand E (2002) Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries. J Power Sources 104(1):108–114CrossRefGoogle Scholar
  24. 24.
    Gallo Stampino P,Molina D,Omati L,Turri S,Levi M,Cristiani C, Dotelli G,(2011) Surface treatments with perfluoropolyether derivatives for the hydrophobization of gas diffusion layers for PEM fuel cells. J Power Sources196:7645–7648, 18CrossRefGoogle Scholar
  25. 25.
    Matsubara K, Danno M, Inoue M, Nishizawa H, Honda Y, Abe T (2013) Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system. Appl Surf Sci 284:340–347CrossRefGoogle Scholar
  26. 26.
    Kujawski W,Kujawa J,Wierzbowska E,Cerneaux S,Bryjak M,Kujawski J (2016) Influence of hydrophobization conditions and ceramic membranes pore size on their properties in vacuum membrane distillation of water–organic solvent mixtures.J Membr Sci499:442–451CrossRefGoogle Scholar
  27. 27.
    Doeff MM, Hu Y, McLarmon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209CrossRefGoogle Scholar
  28. 28.
    Palomares V, Goni A, Gil de Muro I, de Meatza I, Bengoechea M, Cantero I, Rojo T (2010) Conductive additive content balance in Li-ion battery cathodes: commercial carbon blacks vs. in situ carbon from LiFePO4/C composites. JPower Sources 195(22):7661–7668CrossRefGoogle Scholar
  29. 29.
    Zhu Z, Cheng F, Chen J (2013) Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J MaterChem A 1(33):9484–9490Google Scholar
  30. 30.
    Churikov AV, Ivanishchev AV, Ivanishcheva IA, Zapsis KV, Gamayunova IM, Sycheva VO (2008) Kinetics of electrochemical lithium intercalation into thin tungsten (VI) oxide layers. Russ J Electrochem 44(5):530–542CrossRefGoogle Scholar
  31. 31.
    West AR (2014) Solid state chemistry and its applications. Wiley, ChichesterGoogle Scholar
  32. 32.
    Yaroslavtsev AB (2016) Solid electrolytes: main prospects of research and development. Russ Chem Rev 85(11):1255–1276CrossRefGoogle Scholar
  33. 33.
    Zhong Z, Ouyang C, Shi S, Lei M (2008) Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. Chem Phys Chem 9:2104–2108CrossRefGoogle Scholar
  34. 34.
    Han C, He Y-B, Wang S, Wang C, Du H, Qin X, Lin Z, Li B, Kang F (2016) Large polarization of Li4Ti5O12 lithiated to 0 V at large charge/discharge rates. ACS Appl Mater Interfaces 8(29):18788–18796CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • I. A. Stenina
    • 1
  • T. L. Kulova
    • 2
  • A. M. Skundin
    • 2
  • A. B. Yaroslavtsev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations