Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2649–2657 | Cite as

Single-frequency impedance analysis of biofunctionalized dendrimer-encapsulated Pt nanoparticles-modified screen-printed electrode for biomolecular detection

  • Shobhita Singal
  • Avanish K. Srivastava
  • R. K. Kotnala
  • Rajesh
Original Paper
  • 41 Downloads

Abstract

We report the fabrication of polyamidoamine (PAMAM) dendrimer with 128 carboxyl group-encapsulated Pt nanoparticle-modified screen-printed carbon electrode, as an impedimetric biosensor, for the quantitative detection of human cardiac biomarker troponin-I (cTnI). PAMAM-Pt was electrochemically deposited over SPCE and its 128 terminal carboxyl groups were used as anchors for the site-specific biomolecular immobilization of protein antibody, anti-cTnI. The biosensor was characterized by contact angle measurements, transmission electron microscopy, UV-visible spectroscopy, and electrochemical techniques. A single-frequency impedance analysis study was utilized for the biomolecular sensing by monitoring the changes in the phase angle obtained at an optimized frequency resulting from antigen-antibody interactions. An optimized frequency of 100 Hz was obtained at which maximum changes in the phase angle were observed after immunoreactions for a given concentration of analyte. A concentration-dependent increase in the phase angle of the biosensor was observed with increasing cTnI concentration in the range of 1 pg mL−1 to 100 ng mL−1. Based on the concentration response data, the dissociation constant was found to be 0.51 pM reflecting high affinity of biosensor towards cTnI analyte arising due to high anti-cTnI loading with a better probe orientation on the 3-dimensional PAMAM-Pt structure.

Keywords

Frequency Impedance Phase angle Screen-printed electrode Dendrimer Nanoparticle 

References

  1. 1.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664CrossRefGoogle Scholar
  2. 2.
    Figeys D (2003) Proteomics in 2002: a year of technical development and wide-ranging applications. Anal Chem 75(12):2891–2905CrossRefGoogle Scholar
  3. 3.
    Rajesh SV, Puri NK, Mulchandani A, Kotnala RK (2016) High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection. Appl Phys Lett 109(24):243504CrossRefGoogle Scholar
  4. 4.
    Diware MS, Cho HM, Chegal W, Cho YJ, Kim DS, SW O, Kim KS, Paek SH (2017) Ultasensitive label-free detection of cardiac biomarkers with optical SIS sensors. Biosens Bioelectron 87:242–248CrossRefGoogle Scholar
  5. 5.
    Lee I, Luo X, Huang J, Cui XT, Yun M (2012) Detection of cardiac biomarkers using polyaniline nanowire-based conductometric biosensors. Biosenors 2(2):205–220CrossRefGoogle Scholar
  6. 6.
    Apple FS, Falahati A, Paulsen PR, Miller EA, Sharkey S (1997) Improves detection of minor ischemic myocardial injury with measurement of serum cardiac troponin I. Clin Chem 43(11):2047–2051Google Scholar
  7. 7.
    Kim TK, Oh SW, Hong SC, Mok YJ, Choi EY (2014) Point-of-care fluorescence immunoassay for cardiac panel biomarkers. J Clin Lab Anal 28(6):419–427CrossRefGoogle Scholar
  8. 8.
    Li F, Yu Y, Cui H, Yang D, Bian Z (2013) Label free electrochemiluminescence immunosensor for cardiac troponin I using luminal functionalized gold nanoparticles as a sensing platform. Analyst 138(6):1844–1850CrossRefGoogle Scholar
  9. 9.
    Wang J, Ibanez A, Chatrathi MP, Escarpa A (2001) Electrochemical enzyme immunoassays on microchip platforms. Anal Chem 73(21):5323–5327CrossRefGoogle Scholar
  10. 10.
    Ho JA, Lin YC, Wang LS, Hwang KC, Chou PT (2009) Carbon nanoparticle-enhanced immunoelectrical detection for protein tumor marker with cadmium sulphide biotracers. Anal Chem 81:1340–1346CrossRefGoogle Scholar
  11. 11.
    Hu C, Yang DP, Wang Z, Huang P, Wang X, Chen D, Cui D, Yang M, Jia N (2013) Bio-mimetically synthesized Ag@BSA microspheres as a novel electrochemical biosensing interface for sensitive detectionof tumor cells. Biosens Bioelectron 41:656–661CrossRefGoogle Scholar
  12. 12.
    Lin D, Wu J, Wang M, Yan F, Ju H (2012) Tripal signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing. Anal Chem 84(8):3662–3668CrossRefGoogle Scholar
  13. 13.
    Liang G, Liu S, Zou G, Zhang X (2012) Ultrasensitive immunoassay based on anodic near-infrared electrochemiluminescence from dual-stabilizer-capped CdTe nanocrystals. Anal Chem 84(24):10645–10649CrossRefGoogle Scholar
  14. 14.
    Mani V, Chikkaveeraiah BV, Patel V, Gutkind JS, Rusling JF (2009) Microfluidic electrochemical immunoassay for ultrasensitive detection of two cancer biomarker proteins in serum. ACS Nano 3(3):585–594CrossRefGoogle Scholar
  15. 15.
    North SH, Lock EH, Taitt CR, Walton SG (2010) Critical aspects of biointerface design and their impact on biosensor development. Anal Bioanal Chem 397(3):925–933CrossRefGoogle Scholar
  16. 16.
    Yoon HC, Kim HS (2000) Multilayered assembly of dendrimers with enzymes on gold: thickness-controlled biosensing interface. Anal Chem 72(5):922–926CrossRefGoogle Scholar
  17. 17.
    Markovarga G, Johansson K, Gorton L (1964) Enzyme-based biosensor as a selective detection unit in column liquid chromatography. J Chromatogr A 660:153–167CrossRefGoogle Scholar
  18. 18.
    Boujtita M, Chapleau M, El Murr N (1996) Biosensors for analysis of ethanol in food: effect of the pasting liquid. Anal Chim Acta 319(1-2):91–96CrossRefGoogle Scholar
  19. 19.
    Hasanzadeh H, Shadzou N, Eskandani M, Soleymani J, Jafari F, Guardia M (2014) Dendrimer-encapsulated and cored metal nanoparticles for electrical nanobiosensing. TrAC 53:137–149Google Scholar
  20. 20.
    Bas SZ, Gulce H, Yildiz S, Gulce A (2011) Amperometric biosensors based on deposition of gold and platinum nanoparticles on polyvinylferrocene modified electrode for xanthine detection. Talanta 87:189–196CrossRefGoogle Scholar
  21. 21.
    Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1755–1789CrossRefGoogle Scholar
  22. 22.
    Negahdary M, Ardakani MB, Sattarahmady N, Yadegari H, Heli H (2017) Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-applied to early detection of myocardial infarction. Sensors Actuators B: Chem 252:62–71CrossRefGoogle Scholar
  23. 23.
    Shanmugam NR, Muthukumar S, Chaudhry S, Anguiano J (2017) Prasad S. Biosens Bioelectron.  https://doi.org/10.1016/j.bios.2016.10.046
  24. 24.
    Yu T, Wang W, Chen J, Zeng Y, Li Y, Yang G, Li Y (2012) Dendrimer-encapsulated Pt nanoparticles: an artificial enzyme for hydrogen production. J Phys Chem C 116(19):10516–10521CrossRefGoogle Scholar
  25. 25.
    Zhao M, Crooks RM (1999) Angew Chem Int Ed 38:364CrossRefGoogle Scholar
  26. 26.
    Liu DX, Gao JX, Murphy CJ, Williams CT (2004) In situ attenuated total reflection infrared spectroscopy of dendrimer-stabilized Pt nanoparticles adsorbed on alumina. J Phys Chem B 108:12911CrossRefGoogle Scholar
  27. 27.
    Liu C, Zhang H, Tang Y, Luo S (2014) Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation. J Mater Chem A 2(13):4580–4587CrossRefGoogle Scholar
  28. 28.
    Arotiba OA, Owino JH, Baker PG, Iwuoha EI (2010) Electrochemical impedimetry of electrodeposited poly (propylene imine) dendrimer monolayer. J Electroanal Chem 638(2):287–292CrossRefGoogle Scholar
  29. 29.
    Monk PMS (2005) Fundamentals of electroanalytical chemistry. Wiley, EnglandGoogle Scholar
  30. 30.
    Ko S, Kim B, Jo SS, Oh SY, Park JK (2007) Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly (dimethylsiloxane) channel. Biosens Bioelectron 23(1):51–59CrossRefGoogle Scholar
  31. 31.
    Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-I using carbon nanofibre based nanoelectrode array. Anal Chem 85(8):3858–3863CrossRefGoogle Scholar
  32. 32.
    Li Z, Ma KE, Cheng Z, Yan C, Liu G (2017) Fabrication of electrochemical immunosensor for cardiac biomarker troponin I determination and its potential for acute myocardial infarction diagnosis. Int J Electrochem Sci 12:2389–2399CrossRefGoogle Scholar
  33. 33.
    AAhammad AJS, Choi YH, Koh K, Kim JH, Lee JJ, Lee M (2011) Electrochemical detection of cardiac biomarker troponin I at gold nanoparticle-modified ITO electrode by using open circuit potential. Int J Electrochim Sci 6:1906Google Scholar
  34. 34.
    Shumkov AA, Suprun EV, Shatinina SZ, Lisitsa AV, Shumyantseva VV, Archakov AI (2013) Gold and silver nanoparticles for electrochemical detection of cardiac troponin I based on stripping voltammetr. J Bionanosci 3(2):216–222CrossRefGoogle Scholar
  35. 35.
    Shu-Hai J, Ting F, Juan LL, Yi C, Qing ZX, Liang SZ, Liang LY, Kun SZ (2014) The detection of cTnI by the aptamer biosensor. Prog Biochem Biophys 41:916–920Google Scholar
  36. 36.
    Kumar S, Kumar S, Augustine S, Malhotra BD (2017) Protein functionalized nanostructured zirconia based electrochemical immunosensor for cardiac troponin I detection. J. Mater.  https://doi.org/10.1557/jmr.2017.102

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.CSIR-National Physical LaboratoryAcademy of Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations