Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2597–2604 | Cite as

Electrochemical investigation of magnetite-carbon nanocomposite in situ grown on nickel foam as a high-performance binderless pseudocapacitor

  • K. Malaie
  • MR Ganjali
  • T. Alizadeh
  • P. Norouzi
Original Paper


Magnetite-carbon nanocomposite was grown in situ on nickel foam by a novel auto-combustion method, and it was investigated for application as a pseudocapacitor electrode. Scanning electron microscopy (SEM) images of the magnetite-carbon (Fe3O4-C/Ni) show a sphere-like morphology with a diameter of 50 nm, and the amount of carbon in the nanocomposite was calculated 12.6% based on the thermogravimetric analysis (TGA). Infrared analysis indicates an in situ coating of the Fe3O4 nanospheres by carbon-oxygen moieties. The electrochemical behavior of the nanocomposite was studied in a wide potential window of 0 to − 1.2 V in 3 M KOH solution. The effect of a potential scan rate on the voltammetric currents shows a capacitive-dominant charge storage mechanism due probably to abundant electroactive sites on the electrode surface. A high specific capacitance of 300 F g−1 at 1 A g−1 in a wide potential window from 0 to − 1.2 V was achieved. The cycling stability studies were carried out in two different potential windows over 1000 CV cycles, and the nanocomposite showed a capacitance retention of 73% over 1 V. The pseudocapacitive performance observed here is superior to most of the magnetite-based pseudocapacitors reported to date.


Fe3O4-C Nanospheres Nanocomposite Pseudocapacitor Stability 


Funding information

The authors receive financial support from the University of Tehran.

Supplementary material

10008_2018_3976_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2670 kb)


  1. 1.
    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1(6):16070CrossRefGoogle Scholar
  2. 2.
    Dubal DP, Wu YP, Holze R (2016) Supercapacitors: from the Leyden jar to electric busses. ChemTexts 2(3):13CrossRefGoogle Scholar
  3. 3.
    Mahdavi H, Kahriz PK, Gholipour Ranjbar H, Shahalizade T (2016) Enhancing supercapacitive performance of polyaniline by interfacial copolymerization with melamine. J Mater Sci Mater Electron 27:7407–7414CrossRefGoogle Scholar
  4. 4.
    Jiang H, Lee PS, Li C (2013) Three-dimensional carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6(1):41–53CrossRefGoogle Scholar
  5. 5.
    Liu W-W, Feng Y-Q, Yan X-B, Chen JT, Xue QJ (2013) Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater 23(33):4111–4122CrossRefGoogle Scholar
  6. 6.
    He S, Chen W (2015) 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance. Nano 7:6957–6990Google Scholar
  7. 7.
    Ye Z, Wang F, Jia C, Mu K, Yu M, Lv Y, Shao Z (2017) Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chem Eng J 330:1166–1173CrossRefGoogle Scholar
  8. 8.
    Zhu L, Zhou XH, Shi HC (2014) A potentiometric cobalt-based phosphate sensor based on screen-printing technology. Front Environ Sci Eng 8(6):945–951CrossRefGoogle Scholar
  9. 9.
    Kumar A, Sanger A, Kumar A, Kumar Y, Chandra R (2016) An efficient α-MnO2 nanorods forests electrode for electrochemical capacitors with neutral aqueous electrolytes. Electrochim Acta 220:712–720CrossRefGoogle Scholar
  10. 10.
    Liu S, San Hui K, Hui KN, Yun JM, Kim KH (2016) Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J Mater Chem A 4(21):8061–8071CrossRefGoogle Scholar
  11. 11.
    Kazemi SH, Malae K (2017) Electrodeposited Ni(OH)2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors. J Iran Chem Soc 14(2):419–425CrossRefGoogle Scholar
  12. 12.
    Gao Q, Wang X, Shi Z, Ye Z, Wang W, Zhang N, Hong Z, Zhi M (2018) Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem Eng J 331:185–193CrossRefGoogle Scholar
  13. 13.
    Gholipour-Ranjbar H, Ganjali MR, Norouzi P, Naderi HR (2016) Functionalized graphene aerogel with p-phenylenediamine and its composite with porous MnO2: investigating the effect of functionalizing agent on supercapacitive performance. J Mater Sci Mater Electron 27:10163–10172CrossRefGoogle Scholar
  14. 14.
    Malaie K, Ganjali MR, Alizadeh T, Norouzi P (2018) Hydrothermal growth of magnesium ferrite rose nanoflowers on nickel foam; application in high-performance asymmetric supercapacitors. J Mater Sci Mater Electron 29:650–657CrossRefGoogle Scholar
  15. 15.
    Malaie K, Ganjali MR, Alizadeh T, Norouzi P (2017) Simple electrochemical preparation of nanoflake-like copper oxide on Cu-plated nickel foam for supercapacitor electrodes with high areal capacitance. J Mater Sci Mater Electron 28:14631–14637CrossRefGoogle Scholar
  16. 16.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597CrossRefGoogle Scholar
  17. 17.
    Wang Z, Jia W, Jiang M, Chen C, Li Y (2016) One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res 9(7):2026–2033CrossRefGoogle Scholar
  18. 18.
    Javed MS, Zhang C, Chen L, Xi Y, Hu C (2016) Hierarchical mesoporous NiFe2O4 nanocone forests directly growing on carbon textile for high performance flexible supercapacitors. J Mater Chem A 4(22):8851–8859CrossRefGoogle Scholar
  19. 19.
    Vadiyar MM, Kolekar SS, Chang J-Y, Kashale AA, Ghule AV (2016) Reflux condensation mediated deposition of Co3O4 nanosheets and ZnFe2O4 nanoflakes electrodes for flexible asymmetric supercapacitor. Electrochim Acta 222:1604–1615CrossRefGoogle Scholar
  20. 20.
    Zeng Y, Yu M, Meng Y, Fang P, Lu X, Tong Y (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6(24):1601053CrossRefGoogle Scholar
  21. 21.
    Kumbhar VS, Jagadale AD, Shinde NM, Lokhande CD (2012) Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl Surf Sci 259:39–43CrossRefGoogle Scholar
  22. 22.
    Bhojane P, Sharma A, Pusty M et al (2016) Synthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitors 16:1–6Google Scholar
  23. 23.
    Li B, Fu Y, Xia H, Wang X (2014) High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Mater Lett 122:193–196CrossRefGoogle Scholar
  24. 24.
    Cai W, Lai T, Dai W, Ye J (2014) A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids. J Power Sources 255:170–178CrossRefGoogle Scholar
  25. 25.
    Castro PA, Vago ER, Calvo EJ (1996) Surface electrochemical transformations on spinel iron oxide electrodes in aqueous solutions. J Chem Soc Faraday Trans 92(18):3371CrossRefGoogle Scholar
  26. 26.
    Rebuttini V, Fazio E, Santangelo S, Neri F, Caputo G, Martin C, Brousse T, Favier F, Pinna N (2015) Chemical modification of graphene oxide through diazonium chemistry and its influence on the structure-property relationships of graphene oxide-iron oxide nanocomposites. Chem - A Eur J 21(35):12465–12474CrossRefGoogle Scholar
  27. 27.
    Kim YH, Park SJ (2011) Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes. Curr Appl Phys 11(3):462–466CrossRefGoogle Scholar
  28. 28.
    Li L, Gao P, Gai S, He F, Chen Y, Zhang M, Yang P (2016) Ultra small and highly dispersed Fe3O4 nanoparticles anchored on reduced graphene for supercapacitor application. Electrochim Acta 190:566–573CrossRefGoogle Scholar
  29. 29.
    Pardieu E, Pronkin S, Dolci M d et al (2015) Hybrid layer-by-layer composites based on a conducting polyelectrolyte and Fe3O4 nanostructures grafted onto graphene for supercapacitor application. J Mater Chem A 3(45):22877–22885CrossRefGoogle Scholar
  30. 30.
    Wang Q, Jiao L, Du H et al (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106CrossRefGoogle Scholar
  31. 31.
    Wang Y, He P, Zhao X, Lei W, Dong F (2014) Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors. J Solid State Electrochem 18(3):665–672CrossRefGoogle Scholar
  32. 32.
    Dezfuli AS, Ganjali MR, Naderi HR, Norouzi P (2015) A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv 5(57):46050–46058CrossRefGoogle Scholar
  33. 33.
    Brayner R, Fievet F, Coradin T (2013) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer London: Imprint: Springer, LondonGoogle Scholar
  34. 34.
    Ivashchenko O, Jurga-Stopa J, Coy E, Peplinska B, Pietralik Z, Jurga S (2016) Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites. Appl Surf Sci 364:400–409CrossRefGoogle Scholar
  35. 35.
    Lim J, Ryu SY, Kim J, Jun Y (2013) A study of TiO2/carbon black composition as counter electrode materials for dye-sensitized solar cells. Nanoscale Res Lett 8(1):227CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Forghani M, Donne SW (2018) Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior. J Electrochem Soc 165(3):A664–A673CrossRefGoogle Scholar
  37. 37.
    Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L (2013) Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 114:674–680CrossRefGoogle Scholar
  38. 38.
    Sayahi H, Kiani MA, Kazemi SH (2014) Ultrasonic-assisted synthesis of magnetite/carbon nanocomposite for electrochemical supercapacitor. J Solid State Electrochem 18(2):535–543CrossRefGoogle Scholar
  39. 39.
    Liu M, Sun J (2014) In situ growth of monodisperse Fe3O4 nanoparticles on graphene as flexible paper for supercapacitor. J Mater Chem A 2(30):12068–12074CrossRefGoogle Scholar
  40. 40.
    Wang L, Yu J, Dong X, Li X, Xie Y, Chen S, Li P, Hou H, Song Y (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4(3):1531–1537CrossRefGoogle Scholar
  41. 41.
    Oh I, Kim M, Kim J (2015) Deposition of Fe3O4 on oxidized activated carbon by hydrazine reducing method for high performance supercapacitor. Microelectron Reliab 55(1):114–122CrossRefGoogle Scholar
  42. 42.
    Xie J, Xia Q, Xu M, Xia H (2016) Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 13:287–288Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Excellence in Electrochemistry, School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  3. 3.Department of Analytical Chemistry, School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations