Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2561–2568 | Cite as

Ultrafast auto flame synthesis for the mass production of LiCoO2 as a cathode material for Li-ion batteries

  • Laxman Singh
  • Atendra Kumar
  • Hansol Lee
  • Jiwon Lee
  • Minsoo Ji
  • Youngil Lee
Original Paper
  • 84 Downloads

Abstract

This article reports for the first time ultrafast automatic flame synthesis of high-quality LiCoO2 in open-air conditions as a cathode material for Li-ion batteries. This synthetic method offers the advantages of simplicity, energy, and time saving, as well as low cost with better electrochemical performance than the commercial LiCoO2. The reported method provides the opportunity to develop the scheme, to produce not only LiCoO2 but also commercially available isomorphs of lithium metal oxides as cathode materials beyond laboratory-scale limitations. The entire procedure is completed within 30–50 min, which is the easiest way to obtain LiCoO2 among the reported procedure so far. It can be found that the automatic flame-synthesized LiCoO2 has a better crystal structure and higher specific discharge capacity than the commercial LiCoO2 at all C rates, particularly at higher C rates.

Keywords

LiCoO2 Auto flame synthesis Cathode material Lithium-ion batteries 

Notes

Funding information

This study was supported by the National Research Foundation (NRF-2018R1A2B6001489) and Priority Research Centers Program (NRF-2009-0093818) in Republic of Korea.

Supplementary material

10008_2018_3972_MOESM1_ESM.doc (2.6 mb)
ESM 1 (DOC 2626 kb)
10008_2018_3972_MOESM2_ESM.mp4 (6 mb)
ESM 2 (MP4 6155 kb)

References

  1. 1.
    Aragón MJ, Lavela P, León B, Vicente CP, Tirado JL, Abarca CV (2010) On the use of the reverse micelles synthesis of nanomaterials for lithium-ion batteries. J Solid State Electrochem 14(10):1749–1753CrossRefGoogle Scholar
  2. 2.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954CrossRefGoogle Scholar
  3. 3.
    Shimoda K, Murakami M, Takamatsu D, Arai H, Uchimoto Y, Ogumi Z (2013) In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode. Electrochim Acta 108:343–349CrossRefGoogle Scholar
  4. 4.
    Jo MK, Jeong S, Cho J (2010) High power LiCoO2 cathode materials with ultra energy density for Li-ion cells. Electrochem Commun 12:992–995CrossRefGoogle Scholar
  5. 5.
    Ermete A (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170:159–171CrossRefGoogle Scholar
  6. 6.
    Huang B, Jang YI, Chiang YM, Sadoway DR (1998) Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications. J Appl Electrochem 28:1365–1369CrossRefGoogle Scholar
  7. 7.
    Chen H, Grey CP (2008) Molten salt synthesis and high rate performance of the “desert-rose” form of LiCoO2. Adv Mater 20:2206–2210CrossRefGoogle Scholar
  8. 8.
    Sathiya M, Prakash RASK, Shukla AK (2009) Nitrate-melt synthesized HT-LiCoO2 as a superior cathode-material for lithium-ion batteries. Mater 2:857–868CrossRefGoogle Scholar
  9. 9.
    Ghosh P, Mahanty S, Basu RN (2008) Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2. Mater Chem Phys 110:406–410CrossRefGoogle Scholar
  10. 10.
    Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791CrossRefGoogle Scholar
  11. 11.
    Xiao L, Yang Y, Zhao Y, Ai X, Yang H, Cao YJ (2008) Enhanced electrochemical performance of submicron LiCoO2 synthesized by polymer pyrolysis method. J Solid State Electrochem 12:149–153CrossRefGoogle Scholar
  12. 12.
    Yan H, Huang X, Lu Z, Huang H, Xue R, Chen L (1997) Microwave synthesis of LiCoO2 cathode materials. J Power Sources 68:530–532CrossRefGoogle Scholar
  13. 13.
    Jang HD, Seong CM, Suh YJ, Kim HC, Lee CK (2004) Synthesis of lithium-cobalt oxide nanoparticles by flame spray pyrolysis. Aerosol Sci Technol 38:1027–1032CrossRefGoogle Scholar
  14. 14.
    Burukhin A, Brylev O, Hany P, Churagulov BR (2002) Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries. Solid State Ionics 151:259–263CrossRefGoogle Scholar
  15. 15.
    Larcher D, Delobel B, Laffont LD, Simon E, Blach JF, Baudrin E (2010) Formation of nanometric HT-LiCoO2 by a precipitation and aging process in an alcoholic solution. Inorg Chem 49:10949–10955CrossRefGoogle Scholar
  16. 16.
    Shlyakhtin OA, Choi SH, Yoon YS, Oh YJ (2004) Characterization of nanocrystalline HT-LiCoO2 cathode materials for secondary lithium batteries. Electrochim Acta 50:511–516CrossRefGoogle Scholar
  17. 17.
    Kang SG, Kang SY, Ryu KS, Chang SH (1999) Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics 120:155–161CrossRefGoogle Scholar
  18. 18.
    Rodriguez MA, Ingersoll D, Doughty DH (2002) Rietveld refinement of LiCoO2-type layered structures: semi-quantitative analysis of Li contents. JCPDS-International Centre for Diffraction Data Advances in X-ray Analysis 45:182–187Google Scholar
  19. 19.
    Basch A, Campo L, Albering JH, White JW (2014) Chemical delithiation and exfoliation of LixCoO2. J Solid State Chem 220:102–110CrossRefGoogle Scholar
  20. 20.
    Lou S, Shen B, Zuo P, Yin G, Yang L, Ma Y, Cheng X, Du C, Gao Y (2015) Electrochemical performance degeneration mechanism of LiCoO2 with high state of charge during long-term charge/discharge cycling. RSC Adv 5:81235–81242CrossRefGoogle Scholar
  21. 21.
    Hoang K, Johannes MD (2014) Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations. J Mater Chem A 2:5224–5235CrossRefGoogle Scholar
  22. 22.
    Hirschinger J, Mongrelet T, Marichal C, Granger P, Savariault JM, Deramond E, Galy J (1993) 6Li and 7Li NMR in high-temperature phases of LixV2O5 bronzes (0.2 ≤ x≤ 1). J Phys Chem 97:10301–10311CrossRefGoogle Scholar
  23. 23.
    Qian D, Hinuma Y, Chen H, Du LS, Carroll KJ, Ceder G, Grey CP, Meng YS (2012) Electronic spin transition in nanosize stoichiometric lithium cobalt oxide. J Am Chem Soc 134:6096–6099CrossRefGoogle Scholar
  24. 24.
    Ganguly P, Venkatraman TN, Rajamohanan PR, Ganapathy S (1997) Evidence for multiple M sites in AMO2 compounds: 59Co solid state NMR studies on LiCoO2. J Phys Chem B 101:11099–11105CrossRefGoogle Scholar
  25. 25.
    Gaudin E, Taulelle F, Stoyanova R, Zhecheva E, Alca’ntara R, Lavela P, Tirado JL (2001) Cobalt(III) effect on 27Al NMR chemical shifts in LiAlxCo1-xO2. J Phys Chem B 105:8081–8087CrossRefGoogle Scholar
  26. 26.
    Lee Y, Kim MG, Kim J, Kim Y, Cho J (2005) Phase transition of bare and coated LixCoO2 (x = 0.4 and 0.24) at 300 °C. J Electrochem Soc 152:A1824–A1827CrossRefGoogle Scholar
  27. 27.
    Gao S, Wei W, Ma M, Qi J, Yang J, Chu S, Zhang J, Guo L (2015) Sol-gel synthesis and electrochemical properties of c-axis oriented LiCoO2 for lithium-ion batteries. RSC Adv 5:51483–51488CrossRefGoogle Scholar
  28. 28.
    Rodrigues S, Munichandraiah N, Shukla AK (2001) Novel solution-combustion synthesis of LiCoO2 and its characterization as cathode material for lithium-ion cells. J Power Sources 102:322–325CrossRefGoogle Scholar
  29. 29.
    Rong HG, Gang L, Dong PZ, Jin X, Long Z, Yuan YX (2004) Structure and electrochemical properties of LiCoO2 synthesized by microwave heating. J Cent S Univ Technol 3:261–264Google Scholar
  30. 30.
    Burukhin A, Brylev O, Hany P, Churagulov BR (2002) Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries. Solid State Ionics 151:259–263CrossRefGoogle Scholar
  31. 31.
    Mizuno Y, Hosono E, Saito T, Okubo M, Hamane DN, Ohishi K, Kudo T, Zhou H (2012) Electrospinning synthesis of wire-structured LiCoO2 for electrode materials of high-power Li-ion batteries. J Phys Chem C 116:10774–10780CrossRefGoogle Scholar
  32. 32.
    Xia H, Wan Y, Assenmacher W, Mader W, Yuan G, Lu L (2014) Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries. NPG Asia Mater 6:1884–4057CrossRefGoogle Scholar
  33. 33.
    Xia H, Lu L, Meng YS, Ceder G (2007) Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J Electrochem Soc 154:A337–A342CrossRefGoogle Scholar
  34. 34.
    Xia H, Lu L, Ceder G (2006) Substrate effect on the microstructure and electrochemical properties of LiCoO2 thin films grown by PLD. J Alloys Compd 417:304–310CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Laxman Singh
    • 1
    • 2
  • Atendra Kumar
    • 3
  • Hansol Lee
    • 1
  • Jiwon Lee
    • 1
  • Minsoo Ji
    • 1
  • Youngil Lee
    • 1
  1. 1.Department of ChemistryUniversity of UlsanUlsanRepublic of Korea
  2. 2.Department of ChemistryR.R.S. College (Magadh University)MokamaIndia
  3. 3.Department of ChemistryIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations