Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2605–2615 | Cite as

Structural, electrical, and electrochemical properties of poly(vinylidene fluoride-co-hexaflouropropylene)/poly(vinyl acetate)-based polymer blend electrolytes for rechargeable magnesium ion batteries

  • S. Ponmani
  • J. Kalaiselvimary
  • M. Ramesh Prabhu
Original Paper
  • 169 Downloads

Abstract

An attempt has been made to prepare a new blend polymer electrolytes (BPEs) based on PVdF-co-HFP and PVAc doped with Mg (ClO4)2 by using the solvent-casting technique. The physicochemical properties of the as prepared polymer electrolytes were characterized by XRD, FTIR, SEM, TG/DTA, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The maximum ionic conductivity value 3.85 × 10−5 S cm−1 has been observed for PVdF-co-HFP (69)-PVAc (23)-Mg (ClO4)2 (8 wt%) system at 30 °C using AC impedance spectroscopic technique. The FTIR analysis confirms the complex formation between the polymers and salts. The TG/DTA studies showed the thermal stability of the film. The polymer electrolyte membrane shows a wide electrochemical stability window, and the temperature dependence of ionic conductivity obeys the Arrhenius rule.

Keywords

Blend polymer electrolytes Cyclic voltammetry Electrochemical stability Mg (ClO4)2 SEM 

Abbreviations

PVdF-HFP

poly(vinylidene fluoride-co-hexaflouropropylene)

PVAc

poly(vinyl acetate)

XRD

X-ray diffraction,

FTIR

Fourier-transform infrared spectroscopy

SEM

scanning electron microscope,

TG/DTA

Thermogravimetric/differential thermal analysis

PMMA

poly(methyl methacrylate)

PEG

polyethylene glycol

Supplementary material

10008_2018_3971_MOESM1_ESM.doc (38 kb)
ESM 1 (DOC 38 kb)

References

  1. 1.
    Mohtadi R, Mizuno F (2014) Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotechnology 5:1291–1311CrossRefGoogle Scholar
  2. 2.
    Liu C, Zachary GN, Cao G (2016) Mater Today. 19(2):109–123.  https://doi.org/10.1016/j.mattod.2015.10.009 CrossRefGoogle Scholar
  3. 3.
    Ha CJ, HyukYoon J, IlCho W, HoJang (2004) Electrochemical properties of LiNi0.8Co0.2 − xAlxO2 prepared by a sol–gel method. J Power Sources 136:132–138CrossRefGoogle Scholar
  4. 4.
    Deng H, Nie P, Luo H, Zhang Y, Wang J, Zhang X (2014) Highly enhanced lithium storage capability of LiNi0.5Mn1.5O4 by coating with Li2TiO3 for Li-ion batteries. J Mater Chem A 2(43):18256–18262CrossRefGoogle Scholar
  5. 5.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen geman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefGoogle Scholar
  6. 6.
    Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187(2):627–634CrossRefGoogle Scholar
  7. 7.
    Novak P, Imdhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium. Electrochim Acta 45(1-2):351–367CrossRefGoogle Scholar
  8. 8.
    Wu N, Yang ZZ, Yao HR, Yin YX, Gu L, Guo YG (2015) Improving the electrochemical performance of Li4Ti5O12 electrode in a rechargeable Mg battery by lithium magnesium co-intercalation. J Angew Chem Int Ed 54(19):5757–5761CrossRefGoogle Scholar
  9. 9.
    Tao ZL, Xu LN, Gou XL, Chen J, Yuan HI (2004) TiS2 nanotubes as the cathode materials of Mg ion batteries. J Chem Comm 18:2080–2081CrossRefGoogle Scholar
  10. 10.
    Kim J, Lee J, You J, Park MS, Hossain MSA, Yamauchi Y, Kim JH (2016) Conductive polymers for next generation energy storage systems, recent progress and new function. MaterHoriz 3:517–535Google Scholar
  11. 11.
    Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of magnesium applications to energy storage. J Electrochem Soc 137(3):775–780CrossRefGoogle Scholar
  12. 12.
    Kumar GG, Munichandriah N (2002) Poly(methylmethacrylate) magnesium triflate gel polymer electrolyte for solid state magnesium battery application. J Electrochim Acta 47(7):1013–1022CrossRefGoogle Scholar
  13. 13.
    Yoshimoto N, Yakushiji S, Ishikawa M, Morita M (2003) Rechargeable magnesium batteries with polymeric gel electrolytes containing magnesium salts. J. Electrochim Acta 48(14-16):2317–2322CrossRefGoogle Scholar
  14. 14.
    Polu AR, Kumar R (2012) Ionic conductivity and discharge characteristic studies of PVA-Mg (CH3COO)2 solid polymer electrolytes. Int J Polymer Mater 62:76–80CrossRefGoogle Scholar
  15. 15.
    Polu AR, Kumar R (2014) Mg2+-ion conducting poly(ethylene glycol)-TiO2composite polymer electrolytes for solid-state batteries. Materials Express 4:79–84CrossRefGoogle Scholar
  16. 16.
    Ulaganathan M, Rajendran S (2010) Preparation and characterization of PVAc/P(VdF-HFP)-based polymer blend electrolytes. Ionics 16:515–521Google Scholar
  17. 17.
    Pandey GP, Agrawal RC, Hashmi SA (2011) Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem 15(10):2253–2264CrossRefGoogle Scholar
  18. 18.
    Oh JS, Ko JM, Kim DW (2004) Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. J Electrochim Acta 50(2-3):903–906CrossRefGoogle Scholar
  19. 19.
    Shakur MF, Ithnin R, Illias HA, Kadir MFZ (2013) Proton conducting polymer electrolyte based on plasticized chotosan-PEO and application in electrochemical devices. Opt Mater 35(10):1834–1841CrossRefGoogle Scholar
  20. 20.
    Kalyanasundaram NT, Subramanian A, Lokesh KS, Muhammed Musthafa OT (2008) Effect of porosity on PVdF-HFP/PMMA based electrolyte. J Materials Chem and Phy 110:11–16CrossRefGoogle Scholar
  21. 21.
    Basri NH, Mohamed NS (2009) Conductivity studies and dielectric behavior of PVdF-HFP/PVC LiClO4 solid polymer electrolyte. Solid State Sci Technol 17:63–72Google Scholar
  22. 22.
    Rajendran S, Shanthi Bama V, Ramesh Prabhu M (2010) Effect of lithium salt concentration in PVAc/PMMA-based gel polymer electrolytes. Ionics 16(1):27–32CrossRefGoogle Scholar
  23. 23.
    Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) PVdF-HFP/PVAc: a review of recent developments in membrane separators for rechargeable lithium-ion batteries. J Energy Environ Sci 7(12):3857–3886CrossRefGoogle Scholar
  24. 24.
    JuHwangSoo Y, KyungJeong KSN, Manuel Stephan A (2007) Electrochemical studies on poly(vinylidene fluoride–hexafluoropropylene) membranes prepared by phase inversion method. Eur Polym J 43:65–71CrossRefGoogle Scholar
  25. 25.
    Ulaganathan M, Rajendran S (2010) Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. J Appl Polym Sci 118:646–651Google Scholar
  26. 26.
    Kirankumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, VVR NR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211CrossRefGoogle Scholar
  27. 27.
    Kim DW, Park JK, Rhee HW (1996) Conducting and thermal studies of solid polymer electrolytes prepared by poly(ethyleneoxide), poly(oligo[oxyethylene]oxysebacoyl) and lithium perchlorate. Solid State Ionics 83(1-2):49–56CrossRefGoogle Scholar
  28. 28.
    Kim CH, Kim HT, Park JK, Moon SI, Yoon MS (1996) Preparation and ionic conductivities of the plasticized polymer electrolytes based on poly(methyl methacrylate-co-alkali metal methacrylate). J polymer Sci: part B:Polymer Phys 34(16):2709–2714CrossRefGoogle Scholar
  29. 29.
    Sung HY, Wang YY, Wan CC (1998) Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries. J Electrochem Soc 145(4):1207–1211CrossRefGoogle Scholar
  30. 30.
    Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Ionic conduction in plasticized PVCPMMA blend polymer electrolytes. Electrochimca Acta 42(10):1571–1579CrossRefGoogle Scholar
  31. 31.
    Jian-HuaCao, Bao-KuZhu, You-YiXu (2006) Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J Membr Sci 281:446–453CrossRefGoogle Scholar
  32. 32.
    Wieczorek W, Florjancy Z, Stevens JR (1995) Proton conducting polymer gels based on a poly acrylamide matrix. Electrochim Acta J 40:2327–2330CrossRefGoogle Scholar
  33. 33.
    Shanmukaraj D, Wang GX, Murugan R, Liu HK (2008) Ionic conductivity and electrochemical stability of PMMA-PEO blend ceramic filler composites. J Phys Chem Solids 69(1):243–248CrossRefGoogle Scholar
  34. 34.
    Prajapathi GK, Roshan R, Gupta PN (2010) Effect of plasticizer on ionic transport and dielectric properties of PVA:H3PO4 proton conducting polymeric electric electrolyte. J Phys and Chem of Solids 71(12):1717–1723CrossRefGoogle Scholar
  35. 35.
    Ulaganathan M, Rajendran S (2011) Novel Li-ion conduction on poly(vinyl acetate)-based hybrid polymer electrolytes with double plasticizers. J Appl Electrochem 41(1):83–88CrossRefGoogle Scholar
  36. 36.
    Gebreyesus MA, Purushotham Y, Sivakumar J (2016) Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2(7):e00134.  https://doi.org/10.1016/j.heliyon.2016.e00134 CrossRefGoogle Scholar
  37. 37.
    Abbrent S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42(4):1407–1416CrossRefGoogle Scholar
  38. 38.
    Ataollahi N, Ahmad A, Hamzah H, Rahman MYA, Mohamed NS (2012) Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int J Electrochem Sci 7:6693–6703Google Scholar
  39. 39.
    Tafur JP, Santos F, Fernández Romero AJ (2015) Influence of the ionic liquid on the gel polymer electrolytes properties. Membranes 5(4):752–771CrossRefGoogle Scholar
  40. 40.
    Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS (2004) Vibrational ac impedance and dielectric spectroscopic studies of poly(vinylacetate)-N,N-dimethylformamide-LiClO4 polymer gel electrolytes. J Power Sources 134(2):235–240CrossRefGoogle Scholar
  41. 41.
    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2007) Structure, thermal and transport properties of PVAc–LiClO4 solid polymer electrolytes. J Phys and Chem Solids 68(3):407–412CrossRefGoogle Scholar
  42. 42.
    Arunkumar D, Selvasekarapandian S, Baskaran R, Savitha T, Nithya H (2012) Thermal vibrational and AC impedence studies on proton conducting polymer electrolytes based on poly(vinylacetate). J Non crystal solids 358:531–536CrossRefGoogle Scholar
  43. 43.
    Ulaganathan M, Nithya R, Rajendran S, Raghu S (2012) Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications. Solid State Ionics 218:7–12CrossRefGoogle Scholar
  44. 44.
    Michael MS, Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98(3-4):167–174CrossRefGoogle Scholar
  45. 45.
    Ulaganathan M, Chithra MM, Rajendran S (2013) Highly porous lithium ion conducting solvent free poly(vinylidene fluoride-co-hexafluoropropylene)/poly( ethyl methacrylate) based polymer blend electrolytes for Li battery applications. J. Electrochim Acta 93:230–235CrossRefGoogle Scholar
  46. 46.
    Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc-LiClO4 polymer electrolytes. J Spectrochim Acta part A 65(5):1234–1240CrossRefGoogle Scholar
  47. 47.
    Ulaganathan M, Sundar Pethaiah S, Rajendran S (2011) Li-ion conduction in PVAc based blend electrolytes for lithium battery applications. J Mater Chem Phys 129(1-2):471–476CrossRefGoogle Scholar
  48. 48.
    Tsunemi K, Ohno H, Tsuchida A (1983) A mechanism of ionic conduction of poly(vinylidene fluoride)-lithium perchlorate hybrid films. J. Electrochim Acta 28(6):833–837CrossRefGoogle Scholar
  49. 49.
    Park US, Hong YJ, Oh SM (1996) Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (pan)-based polymer gel electrolytes. J Electrochim Acta 41(6):849–855CrossRefGoogle Scholar
  50. 50.
    Missan HPS, Chu PP, Sekhon SS (2006) Ion conduction mechanism in non-aqueous polymer electrolytes based on oxalic acid: effect of plasticizer and polymer. J Power Sources 158(2):1472–1479CrossRefGoogle Scholar
  51. 51.
    Polu AR, Kumar R (2013) Preparation and characterization of PVA based polymer electrolytes for electrochemical cell application. Chinese J Polym Sci 31(4):641–648CrossRefGoogle Scholar
  52. 52.
    Tripathi SK, Jain A, Gupita A, Mishra M (2012) Electrical and electrochemical studies on magnesium ion-based polymer gel electrolytes. J Solid State Electrochem 16(5):1799–1806CrossRefGoogle Scholar
  53. 53.
    Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly(vinyl alcohol)-poly(acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100CrossRefGoogle Scholar
  54. 54.
    Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based magnesium ion conducting polymer gel electrolytes. J Power Sources 187(2):627–634CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Ponmani
    • 1
  • J. Kalaiselvimary
    • 1
  • M. Ramesh Prabhu
    • 1
  1. 1.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations