Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2499–2506 | Cite as

Semiconducting and photoelectrochemical characterizations of CuCrO2 powder synthesized by sol-gel method

  • N. BenreguiaEmail author
  • A. Abdi
  • O. Mahroua
  • M. Trari
Original Paper


The delafossite CuCrO2 elaborated by sol gel (SG) route using ethylene glycol as solvent, is p-type semiconductor characterized by a direct band gap of 1.93 eV and activation energy of 0.22 eV. The semi-logarithmic plot gives an exchange current density of 1.8 μA cm−2 in KOH (0.5 M) electrolyte, indicating a good electrochemical stability with a small hysteresis loop and high oxygen over-potential. The structure is highly anisotropic and the electrochemical study is confined in the (a, b) plane with a reversible oxygen intercalation. The capacitance measurement (C−2 - E) exhibits a linear behavior from which a flat band potential of − 0.045 ESCE and a hole density of 8.19 × 1019 cm−3 are determined. The Nyquist diagram shows a small semicircle in the high frequency domain, assigned to the faradic charge transfer, the large semicircle in the medium region is due to grain boundaries while the straight line at low frequencies is attributed to a disparity from pure impedance diffusion.


CuCrO2 Semiconductor Sol-gel Photoelectrochemical Electrochemical impedance spectroscopy 



The work was financially supported by the Faculty of Chemistry (U.S.T.H.B) (Algiers).

Supplementary material

10008_2018_3967_MOESM1_ESM.docx (271 kb)
ESM 1 SM1 XRD pattern of the powder CCOSG after a treatment at 450 °C in air. SM2 SEM images of CuCrO2 synthesized by sol-gel method. SM3 Diffuse reflectance spectrum of CuCrO2 along with the derivative curve. SM4 Indirect optical transitions of CuCrO2 (DOCX 270 kb)


  1. 1.
    Sato H, Minami T, Takata S, Yamada T (1993) Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236(1-2):27–31CrossRefGoogle Scholar
  2. 2.
    Kawazoe H, Yasukawa Y, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389(6654):939–942CrossRefGoogle Scholar
  3. 3.
    Benko FA, Koffyberg FP (1987) Opto-electronic properties of p- and n-type delafossite, CuFeO2. J Phys Chem Solids 48(5):431–434CrossRefGoogle Scholar
  4. 4.
    Monnier JR, Hanrahan MJ, Apai G (1985) A study of the catalytically active copper species in the synthesis of methanol over Cu-Cr oxide. J Catal 92(1):119–126CrossRefGoogle Scholar
  5. 5.
    Nagaura T (1982) New material AgNiO2 for miniature alkaline batterie. Prog Batter Solar Cells 4:105–107Google Scholar
  6. 6.
    Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H (2001) Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure. Appl Phys Lett 78:83–1585Google Scholar
  7. 7.
    Seki S, Onose Y, Tokura Y (2008) Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2 (A = Cu, Ag, Li, or Na). Phys Rev Lett 101:0672041–0672044CrossRefGoogle Scholar
  8. 8.
    Ketir W, Bouguelia A, Trari M (2008) Photocatalytic removal of M2+ ( Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Ag+) over new catalyst CuCrO2. J Hazard Mater 158(2-3):257–263CrossRefPubMedGoogle Scholar
  9. 9.
    Elazhari M, Ammar A, Elaatmani M, Trari M, Doumerc JP (1997) Oxidation at-low temperature of some delafossite-type oxides CuMO2 (M = Sc, Ga, Y, La, Nd, La0.5Y0.5). Eur J Solid State Inorg Chem 34:503–509Google Scholar
  10. 10.
    Ursu D, Bănica R, Vaszilcsin N (2016) Photovoltaic performance of (Al, Mg)-doped CuCrO2 for p-type dye-sensitized solar cells application. J Nanosci Nanotechnol 6:71–76Google Scholar
  11. 11.
    Chiu TW, Yu BS, Wang YR, Chen KT, Lin YT (2011) Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process. J Alloys Comp 509(6):2933–2935CrossRefGoogle Scholar
  12. 12.
    Wang JM, Zheng PC, Li D, Deng ZH, Dong WW, Tao RH, Fang XD (2011) Preparation of delafossite-type CuCrO2 films by sol–gel method. J Alloys Comp 509(18):5715–5719CrossRefGoogle Scholar
  13. 13.
    Zhou S, Fang XD, Deng ZH, Li D, Dong WW, Tano RH, Meng G, Wang T, Zhu XB (2008) Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals. J Cryst Growth 310(24):5375–5379CrossRefGoogle Scholar
  14. 14.
    Ketir W, Bouguelia A, Trari M (2009) NO3 removal with a new delafossite CuCrO2 photocatalyst. Desalination 244(1-3):144–152CrossRefGoogle Scholar
  15. 15.
    Tonooka K, Kikuchi K (2006) Preparation of transparent CuCrO2:Mg/ZnO p n junctions by pulsed laser deposition. Thin Solid Films 515(4):2415–2418CrossRefGoogle Scholar
  16. 16.
    Chiu TW, Yang YC, Yeh AC, Wang YP, Feng YW (2013) Fabrication of transparent CuCrO2: Mg/ZnO p–n junctions prepared by pulsed laser deposition on glass substrate. Vacuum 87:174–177CrossRefGoogle Scholar
  17. 17.
    Saadi S, Bouguelia A, Trari M (2006) Photocatalytic hydrogen evolution over CuCrO2. Sol Energy 80(3):272–280CrossRefGoogle Scholar
  18. 18.
    Zheng SY, Jiang GS, Su JR, Zhu CF (2006) The structural and electrical property of CuCr1 − xNixO2 delafossite compounds. Mater Lett 60(29-30):3871–3873CrossRefGoogle Scholar
  19. 19.
    Sidik U, Lee HY, Lee JY (2015) Characteristics of the Mg-oped Cr-deficient CuCr0.95Mg0.02O2 thin films prepared by using pulsed laser deposition. J Nanosci Nanotechnol 15(7):5163–5166CrossRefPubMedGoogle Scholar
  20. 20.
    Meng Q, Lu S, Lu S, Xiang Y (2012) Preparation of p-type CuCr1−x Mg x O2 bulk with improved thermoelectric properties by sol–gel method. J Sol-Gel Sci Technol 63(1):1–7CrossRefGoogle Scholar
  21. 21.
    Tripathi TS, Niemelä JP, Karppinen M (2015) Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin films. J Mater Chem C 03(32):8364–8371CrossRefGoogle Scholar
  22. 22.
    Farrell L, Norton E, Smith CM, Caffrey D, Shvets IV, Fleischer K (2016) Synthesis of nanocrystalline Cu deficient CuCrO2-a high figure of merit p-type transparent semiconductor. J Mater Chem C 4(1):126–134CrossRefGoogle Scholar
  23. 23.
    Crêpellière J, Popa PL, Bahlawane N, Leturcq R, Werner F, Siebentritt S, Lenoble D (2016) Transparent conductive CuCrO2 thin films deposited by pulsed injection metal organic chemical vapor deposition: up-scalable process technology for an improved transparency/conductivity trade-off. J Mater Chem C4:4278–4287Google Scholar
  24. 24.
    Ketir W, Saadi S, Trari M (2012) Physical and photoelectrochemical characterization of CuCrO2 single crystal. J Solid State Elechtrochem 16(1):213–218CrossRefGoogle Scholar
  25. 25.
    Díaz-García AK, Lana-Villarreal T, Gómez R (2015) Sol-gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting. J Mater Chem A 03(39):19683–19687CrossRefGoogle Scholar
  26. 26.
    Benreguia N, Barnabé A, Trari M (2016) Preparation and characterization of the semiconductor CuMnO2 by sol-gel route. Mater Sci Semicond Process 56:14–19CrossRefGoogle Scholar
  27. 27.
    Chiu TW, Chen YT (2015) Preparation of CuCrO2 nanowires by electrospinning. Ceram Int 41:S407–S413CrossRefGoogle Scholar
  28. 28.
    Liu ZY, Wang GY, Liu XP, Wang YJ (2013) Preparation of CuCrO2 and the photocatalytic properties of its composites. J Fuel Chem Technol 41(12):1473–1480CrossRefGoogle Scholar
  29. 29.
    Hanic F, Hovarth I, Plesch G, Galikova I (1985) Study of copper-chromium oxide catalyst: I. Thermal decomposition of copper(III) chromate, CuCrO4. J Solid State Chem 59(2):190–200CrossRefGoogle Scholar
  30. 30.
    Neumann J, Zhong T, Chang Y (1984) The Cu−O (copper-oxygen) system. Bull Alloy Phase Diagr 5(2):136–141CrossRefGoogle Scholar
  31. 31.
    Chen HY, Chang KP (2013) Influence of post-annealing conditions on the formation of delafossite-CuCrO2 films. ECS J Solid State Sci Technol 2(3):P76–P80CrossRefGoogle Scholar
  32. 32.
    Lalanne M (2010) PhD thesis, ToulouseGoogle Scholar
  33. 33.
    Elkhouni T, Amami M, Strobel P, Ben Salah A (2013) Structural and magnetic properties of substituted delafossite-type oxides CuCr1-xScxO2. World J Condens Matter Phys 3(01):1–8CrossRefGoogle Scholar
  34. 34.
    Bolloju S, Srinivasan R (2014) Synthesis of single crystalline delafossite CuCrO2 by sol-gel growth. Int J Chem Tech Res 6:3265–3267Google Scholar
  35. 35.
    Goswami N, Sharma DK (2010) Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique. Phys E 42(5):1675–1682CrossRefGoogle Scholar
  36. 36.
    Kim D, Miyamoto M, Mishima T, Nakayama M (2005) Strong enhancement of band-edge photoluminescence in CdS quantum dots prepared by a reverse-micelle method. J Appl Phys 98(8):083514–083514CrossRefGoogle Scholar
  37. 37.
    Lan W, Cao WL, Zhang M, Liu XQ, Wang YY, Xie EQ, Yan H (2009) Annealing effect on the structural, optical, and electrical properties of CuAlO2 films deposited by magnetron sputtering. J Mater Sci 44(6):1594–1599CrossRefGoogle Scholar
  38. 38.
    Shy JH, Tseng BH (2005) Characterization of CuAlO2 thin film prepared by rapid thermal annealing of an Al2O3/Cu2O/sapphire structure. J Phys Chem Solids 66(11):2123–2126CrossRefGoogle Scholar
  39. 39.
    Lim SH, Desu S, Rastogi AC (2008) Chemical spray pyrolysis deposition and characterization of p-type CuCr1−xMgxO2 transparent oxide semiconductor thin films. J Phys Chem Solids 69(8):2047–2056CrossRefGoogle Scholar
  40. 40.
    Saadi S (2005) Master thesis (U S T H B) AlgiersGoogle Scholar
  41. 41.
    Benreguia N, Barnabé A, Trari M (2015) Sol–gel synthesis and characterization of the delafossite CuAlO2. J Sol Gel Sci Technol 75(3):670–679CrossRefGoogle Scholar
  42. 42.
    Omeiri S, Bellal B, Bouguelia A, Bessekhouad Y, Trari M (2009) Electrochemical and photoelectrochemical characterization of CuFeO2 single crystal. J Solid State Electrochem 13(9):1395–1401CrossRefGoogle Scholar
  43. 43.
    Benko FA, Koffyberg FP (1986) Preparation and opto-electronic properties of semiconducting CuCrO2. Mater Res Bull 21(6):753–757CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB)AlgiersAlgeria
  2. 2.Laboratory of Electrochemistry and Corrosion, Polytechnic Military SchoolAlgiersAlgeria
  3. 3.Laboratory of Materials Physics, Faculty of Physics (USTHB)AlgiersAlgeria

Personalised recommendations