Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2473–2483 | Cite as

A novel potential-triggered SBA-15/PANI/PSS composite film for selective removal of lead ions from wastewater

  • Beilei Zhang
  • Xiao Du
  • Xiaogang Hao
  • Fengfeng Gao
  • Di Zhang
  • Changlin Liu
  • Guoqing Guan
Original Paper


In this study, a novel potential-triggered electroactive composite film consisting of mesoporous silica SBA-15, polyaniline (PANI), and polystyrenesulfonate (PSS) was fabricated in an aqueous electrolyte solution via a facile pulse potentiostatic method. The obtained composite film was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis, and scanning electron microscopy (SEM). The ion exchange properties were evaluated in a solution containing 0.1 M Pb(NO3)2 by using an electrochemical quartz crystal microbalance (EQCM) as well as cyclic voltammetry (CV) method. It was found that the uptake/release of Pb2+ ions in/from SBA-15/PANI/PSS composite film was successfully achieved by modulating the redox states of the electroactive composite film, and the composite film exhibited different ion exchange behaviors at different scan rates. Based on these results, the ion exchange mechanism was proposed. Compared with the PANI/PSS composite film, the SBA-15/PANI/PSS composite film had higher adsorption capacity as well as higher selectivity toward Pb2+ ions, which should be attributed to the 3D porous morphology of the composite film with more active sites in the mesoporous SBA-15. Remarkably, the film maintained a high stability over 97% even after 500 successive cycles. It is expected that this SBA-15/PANI/PSS composite film can serve as a promising electroactive material for the effective separation of Pb2+ ions from wastewater.

Graphical abstract


Electrochemically switched ion exchange SBA-15/PANI/PSS composite film Potential-triggered Lead ions Selective separation 


Funding information

This work is financially supported by the National Natural Science Foundation of China (21476156, 21776191, and 21706181); JSPS KAKENHI Grant 15K06532, Japan; and Shanxi Provincial Key Innovative Research Team in Science and Technology (No. 2014131006).

Supplementary material

10008_2018_3966_MOESM1_ESM.docx (55 kb)
ESM 1 (DOCX 54 kb)


  1. 1.
    Chavan AA, Li H, Scarpellini A, Marras S, Manna L, Athanassiou A, Fragouli D (2015) ACS Appl Mat Interfaces 7(27):14778–14784CrossRefGoogle Scholar
  2. 2.
    Demey H, Vincent T, Guibal E (2018) Chem Eng J 332:582–595CrossRefGoogle Scholar
  3. 3.
    Papageorgiou SK, Katsaros FK, Kouvelos EP, Kanellopoulos NK (2009) J Hazard Mater 162(2-3):1347–1354CrossRefPubMedGoogle Scholar
  4. 4.
    Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM (2008) Bioresour Technol 99(13):5786–5792CrossRefPubMedGoogle Scholar
  5. 5.
    Hernández-Morales V, Nava R, Acosta-Silva YJ, Macías-Sánchez SA, Pérez-Bueno JJ, Pawelec B (2012) Microporous Mesoporous Mater 160:133–142CrossRefGoogle Scholar
  6. 6.
    Lin SW, Navarro RMF (1999) Chemosphere 39(11):1809–1817CrossRefGoogle Scholar
  7. 7.
    Fu FL, Xie LP, Tang B, Wang Q, Jiang SX (2012) Chem Eng J 189-190:283–287CrossRefGoogle Scholar
  8. 8.
    Mekatel H, Amokrane S, Benturki A, Nibou D (2012) Procedia Eng 33:52–57CrossRefGoogle Scholar
  9. 9.
    Gao J, Sun SP, Zhu WP, Chung TS (2014) J Membr Sci 452:300–310CrossRefGoogle Scholar
  10. 10.
    Ferhat M, Kadouche S, Lounici H (2015) Desalin Water Treat 57:6072–6080CrossRefGoogle Scholar
  11. 11.
    Ge HC, Hua TT, Chen XD (2016) J Hazard Mater 308:225–232CrossRefPubMedGoogle Scholar
  12. 12.
    Liu BJ, Xin L, Meng XH, Yu GL, Wang DF (2013) Chem Eng J 220:412–419CrossRefGoogle Scholar
  13. 13.
    Demey H, Tria SA, Soleri R, Guiseppi-Elie A, Bazin I (2017) Environ Sci Pollut Res 24(1):15–24CrossRefGoogle Scholar
  14. 14.
    Wang ZD, Feng YT, Hao XG, Huang W, Feng XS (2014) J Mater Chem A 2(26):10263–10272CrossRefGoogle Scholar
  15. 15.
    Du X, Zhang Q, Qiao WL, Sun XL, Ma XL, Hao XG, Wang ZD, Abudula A, Guan GQ (2016) Chem Eng J 302:516–525CrossRefGoogle Scholar
  16. 16.
    Zhang Q, Du X, Ma XL, Hao XG, Guan GQ, Wang ZD, Xue CF, Zhang ZL, Zuo ZJ (2015) J Hazard Mater 289:91–100CrossRefPubMedGoogle Scholar
  17. 17.
    Gao FF, Du X, Hao XG, Li SS, Zheng JL, Yang YY, Han NC, Guan GQ (2017) Electrochim Acta 236:434–442CrossRefGoogle Scholar
  18. 18.
    Gao FF, Du X, Hao XG, Li SS, Zheng JL, Yang YY, Han NC, Guan GQ (2017) J Membr Sci 535:20–27CrossRefGoogle Scholar
  19. 19.
    Du X, Hao XG, Wang ZD, Guan GQ (2016) J Mater Chem A 4(17):6236–6258CrossRefGoogle Scholar
  20. 20.
    Lin YH, Cui XL, Bontha J (2006) Environ Sci Technol 40(12):4004–4009CrossRefPubMedGoogle Scholar
  21. 21.
    Cui H, Li Q, Qian Y, Tang R, An H, Zhai JP (2011) Water Res 45(17):5736–5744CrossRefPubMedGoogle Scholar
  22. 22.
    Hao XG, Li YG, Pritzker M (2008) Sep Purif Technol 63(2):407–414CrossRefGoogle Scholar
  23. 23.
    Zhang PL, Zheng JL, Wang ZD, Du X, Gao FF, Hao XG, Guan GQ, Li CC, Liu SB (2016) Ind Eng Chem Res 55(21):6194–6203CrossRefGoogle Scholar
  24. 24.
    Du X, Guan GQ, Li XM, Jagadale AD, Ma XL, Wang ZD, Hao XG, Abudula A (2016) J Mater Chem A 4(36):13989–13996CrossRefGoogle Scholar
  25. 25.
    Du X, Zhang H, Hao XG, Guan GQ, Abudula A (2014) ACS Appl Mater Interfaces 6(12):9543–9549CrossRefPubMedGoogle Scholar
  26. 26.
    Wang ZD, Ma Y, Hao XG, Huang W, Guan GQ, Abudula A (2014) Electrochim Acta 130:40–45CrossRefGoogle Scholar
  27. 27.
    Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120(24):6024–6036CrossRefGoogle Scholar
  28. 28.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279(5350):548–552CrossRefPubMedGoogle Scholar
  29. 29.
    Kang T, Park Y, Choi K, Lee JS, Yi J (2004) J Mater Chem 14(6):1043–1049CrossRefGoogle Scholar
  30. 30.
    Liu Y, Wang Y, Zhang XJ, Xie JM, Yan YS (2010) Adv Mater Res 113-116:775–779CrossRefGoogle Scholar
  31. 31.
    Ćirić-Marjanovic G (2013) Synth Met 177:1–47CrossRefGoogle Scholar
  32. 32.
    Weidlich C, Mangold KM, Jüttner K (2005) Electrochim Acta 50(7-8):1547–1552CrossRefGoogle Scholar
  33. 33.
    Weng SH, Lin ZH, Zhang Y, Chen LX, Zhou JZ (2009) React Funct Polym 69(2):130–136CrossRefGoogle Scholar
  34. 34.
    Tang R, Qin L, Cui H, Zhang Y, Zhai JP (2011) Polym Adv Technol 22(12):2231–2236CrossRefGoogle Scholar
  35. 35.
    Johansson EM, Ballem MA, Cordoba JM, Oden M (2011) Langmuir 27(8):4994–4999CrossRefPubMedGoogle Scholar
  36. 36.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73(1):373–380CrossRefGoogle Scholar
  37. 37.
    Bérubé F, Kaliaguine S (2008) Microporous Mesoporous Mater 115(3):469–479CrossRefGoogle Scholar
  38. 38.
    Luan ZH, Fournier JA, Wooten JB, Miser DE (2005) Microporous Mesoporous Mater 83(1-3):150–158CrossRefGoogle Scholar
  39. 39.
    Luan ZH, Hartmann M, Zhao DY, Zhou WZ, Kevan L (1999) Chem Mater 11(6):1621–1627CrossRefGoogle Scholar
  40. 40.
    Li Y, Zhao K, Du X, Wang ZD, Hao XG, Liu SB, Guan GQ (2012) Synth Met 162(1-2):107–113CrossRefGoogle Scholar
  41. 41.
    Moujahid EM, Inacio J, Besse JP, Leroux F (2003) Microporous Mesoporous Mater 57(1):37–46CrossRefGoogle Scholar
  42. 42.
    Jayamurugan P, Ponnuswamy V, Ashokan S, Jayaprakash R, Ashok N, Guna K, Mariappan R (2014) Mater Sci Pol 32:648–651CrossRefGoogle Scholar
  43. 43.
    Feng XM, Yang G, Liu YG, Hou WH, Zhu JJ (2006) J Appl Polym Sci 101(3):2088–2094CrossRefGoogle Scholar
  44. 44.
    Akieh MN, Price WE, Bobacka J, Ivaska A, Ralph SF (2009) Synth Met 159(23-24):2590–2598CrossRefGoogle Scholar
  45. 45.
    Hao XG, Yan T, Wang ZD, Liu SB, Liang ZH, Shen YH, Pritzker M (2012) Thin Solid Films 520(7):2438–2448CrossRefGoogle Scholar
  46. 46.
    Tansel B (2012) Sep Purif Technol 86:119–126CrossRefGoogle Scholar
  47. 47.
    Nightingale ER Jr (1959) J Phys Chem 63(9):1381–1387CrossRefGoogle Scholar
  48. 48.
    Volkov AG, Paula S, Deamer DW (1997) Bioelectrochem Bioenerg 42(2):153–160CrossRefGoogle Scholar
  49. 49.
    Marcus Y (1991) J Chem Soc Faraday Trans 87(18):2995–2999CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Beilei Zhang
    • 1
  • Xiao Du
    • 1
  • Xiaogang Hao
    • 1
  • Fengfeng Gao
    • 1
  • Di Zhang
    • 2
  • Changlin Liu
    • 1
  • Guoqing Guan
    • 3
  1. 1.Department of Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Chemistry DepartmentShanxi Medical UniversityTaiyuanChina
  3. 3.North Japan Research Institute for Sustainable Energy (NJRISE)Hirosaki UniversityMatsubaraJapan

Personalised recommendations