Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2725–2745 | Cite as

Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films

  • Anil Arya
  • A. L. Sharma
Original Paper

Abstract

The present paper is focused toward the preparation of the flexible and free-standing blend solid polymer electrolyte films based on PEO-PVP complexed with NaPF6 by the solution cast technique. The structural/morphological features of the synthesized polymer nanocomposite films have been investigated in detail using X-ray diffraction, Fourier transform infra-red spectroscopy, Field emission scanning electron microscope, and Atomic force microscopy techniques. The film PEO-PVP + NaPF6 (\( \ddot{\mathrm{O}}/{\mathrm{Na}}^{+}= \)8) exhibits highest ionic conductivity ~ 5.92 × 10−6 S cm−1 at 40 °C and ~ 2.46 × 10−4 S cm−1 at 100 °C. The temperature-dependent conductivity shows an Arrhenius type behavior and activation energy decreases with the addition of salt. The high temperature (100 °C) conductivity monitoring is done for the optimized PEO-PVP + NaPF6 (\( \ddot{\mathrm{O}}/{\mathrm{Na}}^{+}= \)8) highly conductive system and the conductivity is still maintained stable up to 160 h (approx. 7 days). The thermal transitions parameters were measured by the differential scanning calorimetry (DSC) measurements. The prepared polymer electrolyte film displays the smoother surface on addition of salt and a thermal stability up to 300 °C. The ion transference number (tion) for the highest conducting sample is found to be 0.997 and evidence that the present system is ion dominating with negligible electron contribution. Both linear sweep voltammetry and cyclic voltammetry supports the use of prepared polymer electrolyte with long-term cycle stability and thermal stability for the solid-state sodium ion batteries. Finally, a two peak percolation mechanism has been proposed on the basis of experimental findings.

Graphical abstract

A plot of free ion & ion pair area against salt content and AFM image of optimised system

Keywords

Blend polymer electrolyte Electrical conductivity Activation energy Two peak percolation mechanism Transport parameters 

Notes

Acknowledgments

One of the authors (AA) is thankful to the Central University of Punjab for providing the fellowship.

References

  1. 1.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0< x<−1): a new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789CrossRefGoogle Scholar
  2. 2.
    Bella F, Muñoz-García AB, Meligrana G, Lamberti A, Destro M, Pavone M, Gerbaldi C (2017) Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: amorphous versus anatase TiO2. Nano Res 10(8):2891–2903CrossRefGoogle Scholar
  3. 3.
    Placke T, Kloepsch R, Dühnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21(7):1939–1964CrossRefGoogle Scholar
  4. 4.
    Li Y, Lu Y, Zhao C, Hu YS, Titirici MM, Li H et al (2017) Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater 7:130–151CrossRefGoogle Scholar
  5. 5.
    Peters J, Buchholz D, Passerini S, Weil M (2016) Life cycle assessment of sodium-ion batteries. Energy Environ Sci 9(5):1744–1751CrossRefGoogle Scholar
  6. 6.
    Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11(12):5421–5425CrossRefPubMedGoogle Scholar
  7. 7.
    Wang Y, Mu L, Liu J, Yang Z, Yu X, Gu L, Hu YS, Li H, Yang XQ, Chen L, Huang X (2015) A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5(22):1501005CrossRefGoogle Scholar
  8. 8.
    Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, Toney MF, Cui Y (2014) Full open-framework batteries for stationary energy storage. Nat Commun 5:3007CrossRefPubMedGoogle Scholar
  9. 9.
    Suo L, Borodin O, Wang Y, Rong X, Sun W, Fan X, Xu S, Schroeder MA, Cresce AV, Wang F, Yang C (2017) “Water-in-Salt” Electrolyte Makes Aqueous Sodium-Ion Battery Safe, Green, and Long-Lasting. Adv Energy Mater 7:1701189CrossRefGoogle Scholar
  10. 10.
    Colo F, Bella F, Nair JR, Gerbaldi C (2017) Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries. J Power Sources 365:293–302CrossRefGoogle Scholar
  11. 11.
    Singh V K, Singh S K, Gupta H, Balo L, Tripathi A K, Verma Y L, Singh R K (2018) Electrochemical investigations of Na0. 7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery. J Solid State Electrochem 1–11. DOI: 10.1007/s10008-018-3891-5Google Scholar
  12. 12.
    Srivastava N, Kumar M (2016) Ion dynamics and relaxation behavior of NaPF6-doped polymer electrolyte systems. J Solid State Electrochem 20(5):1421–1428CrossRefGoogle Scholar
  13. 13.
    Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(11):589CrossRefGoogle Scholar
  14. 14.
    Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448CrossRefPubMedGoogle Scholar
  15. 15.
    Sohn JY, Im JS, Shin J, Nho YC (2012) PVDF-HFP/PMMA-coated PE separator for lithium ion battery. J Solid State Electrochem 16(2):551–556CrossRefGoogle Scholar
  16. 16.
    Prabakaran P, Manimuthu RP, Gurusamy S (2017) Influence of barium titanate nanofiller on PEO/PVdF-HFP blend-based polymer electrolyte membrane for Li-battery applications. J Solid State Electrochem 21(5):1273–1285CrossRefGoogle Scholar
  17. 17.
    Bella F, Colò F, Nair JR, Gerbaldi C (2015) Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries. ChemSusChem 8(21):3668–3676CrossRefPubMedGoogle Scholar
  18. 18.
    Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17(2):135–143CrossRefGoogle Scholar
  19. 19.
    Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16(4):339–350CrossRefGoogle Scholar
  20. 20.
    Xu R, Huang X, Lin X, Cao J, Yang J, Lei C (2017) The functional aqueous slurry coated separator using polyvinylidene fluoride powder particles for lithium-ion batteries. J Electroanal Chem 786:77–85CrossRefGoogle Scholar
  21. 21.
    Costa CM, Silva MM, Lanceros-Mendez S (2013) Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv 3(29):11404–11417CrossRefGoogle Scholar
  22. 22.
    Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. J Mater Chem A 4(19):7091–7106CrossRefGoogle Scholar
  23. 23.
    Sadiq M, Arya A, Sharma AL (2016) Optimization of free standing polymer electrolytes films for lithium ion batteries application. Int Res Adv 3:16–20Google Scholar
  24. 24.
    Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002CrossRefGoogle Scholar
  25. 25.
    Chowdhury FI, Khandaker MU, Amin YM, Arof AK (2017) Effect of gamma radiation on the transport and structural properties of polyacrylonitrile-lithium bis (oxalato) borate films. Solid State Ionics 304:27–39CrossRefGoogle Scholar
  26. 26.
    Zhang C, Gamble S, Ainsworth D, Slawin AM, Andreev YG, Bruce PG (2009) Alkali metal crystalline polymer electrolytes. Nat Mater 8(7):580–584CrossRefPubMedGoogle Scholar
  27. 27.
    Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540CrossRefGoogle Scholar
  28. 28.
    Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim Acta 45(8-9):1371–1374CrossRefGoogle Scholar
  29. 29.
    Jacob MM, Prabaharan SR, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104(3-4):267–276CrossRefGoogle Scholar
  30. 30.
    Arya A, Sharma S, Sharma AL, Dinesh K, Sadiq M (2016) Structural and dielectric behavior of blend polymer electrolyte based on PEO-PAN + LiPF6. Asian J Eng App Tech 5(1):4–7Google Scholar
  31. 31.
    Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim Acta 48(2):205–209CrossRefGoogle Scholar
  32. 32.
    Joge P, Kanchan DK, Sharma P, Gondaliya N (2013) Effect of nano-filler on electrical properties of PVA-PEO blend polymer electrolyte. Indian J Pure Appl Phys 51:350Google Scholar
  33. 33.
    Ali TM, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21:829–840CrossRefGoogle Scholar
  34. 34.
    Premalatha M, Vijaya N, Selvasekarapandian S, Selvalakshmi S (2016) Characterization of blend polymer PVA-PVP complexed with ammonium thiocyanate. Ionics 22(8):1299–1310CrossRefGoogle Scholar
  35. 35.
    Prasanna CS, Suthanthiraraj SA (2016) Electrical, structural, and morphological studies of honeycomb-like microporous zinc-ion conducting poly (vinyl chloride)/poly (ethyl methacrylate) blend-based polymer electrolytes. Ionics 22(3):389–404CrossRefGoogle Scholar
  36. 36.
    Aravindan V, Vickraman P, Kumar TP (2007) ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB. J Membr Sci 305(1-2):146–151CrossRefGoogle Scholar
  37. 37.
    Ramesh S, Ramesh K, Arof AK (2013) Fumed silica-doped poly (vinyl chloride)-poly (ethylene oxide)(PVC/PEO)-based polymer electrolyte for lithium ion battery. Int J Electrochem Sci 8:8348–8355Google Scholar
  38. 38.
    Reddeppa N, Sharma AK, Rao VN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41CrossRefGoogle Scholar
  39. 39.
    Nadimicherla R, Kalla R, Muchakayala R, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO: KI). Solid State Ionics 278:260–267CrossRefGoogle Scholar
  40. 40.
    Arya A, Sharma AL (2016) Conductivity and stability properties of solid polymer electrolyte based on PEO-PAN+LiPF6 for energy storage. App Sci Lett 2:72–75Google Scholar
  41. 41.
    Kumar A, Deka M (2012) PEO/P (VdF-HFP) blend based Li+ ion-conducting composite polymer electrolytes dispersed with dedoped (insulating) polyaniline nanofibers. J Solid State Electrochem 16(1):35–44CrossRefGoogle Scholar
  42. 42.
    Reddy CVS, Zhu QY, Mai LQ, Chen W (2007) Electrochemical studies on PVC/PVdF blend-based polymer electrolytes. J Solid State Electrochem 11(4):543–548CrossRefGoogle Scholar
  43. 43.
    Zhang X, Takegoshi K, Hikichi K (1992) High-resolution solid-state 13C nuclear magnetic resonance study on poly (vinyl alcohol)/poly (vinylpyrrolidone) blends. Polymer 33(4):712–717CrossRefGoogle Scholar
  44. 44.
    Feng H, Feng Z, Shen L (1993) A high resolution solid-state nmr and dsc study of miscibility and crystallization behaviour of poly (vinyl alcohol) poly (N-vinyl-2-pyrrolidone) blends. Polymer 34(12):2516–2519CrossRefGoogle Scholar
  45. 45.
    Polu AR, Kumar R, Rhee HW (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21(1):125–132CrossRefGoogle Scholar
  46. 46.
    Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B: Cond Matt 406(9):1706–1712CrossRefGoogle Scholar
  47. 47.
    Vondrák J, Reiter J, Velická J, Sedlařı́ková M (2004) PMMA-based aprotic gel electrolytes. Solid State Ionics 170(1-2):79–82CrossRefGoogle Scholar
  48. 48.
    Hashmi SA, Upadhyaya HM, Thakur AK, Verma AL (2000) Experimental investigations on poly (ethylene oxide) based sodium ion conducting composite polymer electrolytes dispersed with SnO2. Ionics 6(3-4):248–259CrossRefGoogle Scholar
  49. 49.
    Song S, Kotobuki M, Zheng F, Xu C, Savilov SV, Hu N, Lu L, Wang Y, Li WD (2017) A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J Mat Chem A 5(14):6424–6431CrossRefGoogle Scholar
  50. 50.
    Luo H, Liang X, Wang L, Zheng A, Liu C, Feng J (2014) Highly mobile segments in crystalline poly (ethylene oxide) 8: NaPF6 electrolytes studied by solid-state NMR spectroscopy. J Chem Phys 140(7):074901CrossRefPubMedGoogle Scholar
  51. 51.
    Bhatt C, Swaroop R, Arya A, Sharma AL (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5:418–434Google Scholar
  52. 52.
    Koduru HK, Iliev MT, Kondamareddy KK, Karashanova D, Vlakhov T, Zhao XZ, Scaramuzza N (2016) Investigations on poly (ethylene oxide)(PEO)-blend based solid polymer electrolytes for sodium ion batteries. J Phys: Conf Series 764:012006Google Scholar
  53. 53.
    Roy A, Dutta B, Bhattacharya S (2017) Ion dynamics in NaBF4 salt-complexed PVC–PEO blend polymer electrolytes: correlation between average ion hopping length and network structure. Ionics 1–11Google Scholar
  54. 54.
    Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211CrossRefGoogle Scholar
  55. 55.
    Jamesh MI, Prakash AS (2018) Advancement of technology towards developing Na-ion batteries. J Power Sources 378:268–300CrossRefGoogle Scholar
  56. 56.
    Kesavan K, Mathew CM, Rajendran S, Ulaganathan M (2014) Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate. Mate Sci Eng B 184:26–33CrossRefGoogle Scholar
  57. 57.
    Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25(11):1428–1434CrossRefGoogle Scholar
  58. 58.
    Ma Y, Li LB, Gao GX, Yang XY, You Y (2016) Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochim Acta 187:535–542CrossRefGoogle Scholar
  59. 59.
    Kumar KN, Kang M, Sivaiah K, Ravi M, Ratnakaram YC (2016) Enhanced electrical properties of polyethylene oxide (PEO)+ polyvinylpyrrolidone (PVP): Li+. Ionics 22(6):815–825CrossRefGoogle Scholar
  60. 60.
    Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19(12):1811–1823CrossRefGoogle Scholar
  61. 61.
    Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer–clay nanocomposite film based on (PAN)8LiClO4. J Polym Sci B Polym Phys 46(23):2577–2592CrossRefGoogle Scholar
  62. 62.
    Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19(5):795–809CrossRefGoogle Scholar
  63. 63.
    Das S, Ghosh A (2017) Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J Phys Chem B 121(21):5422–5432CrossRefPubMedGoogle Scholar
  64. 64.
    Vijaya N, Selvasekarapandian S, Karthikeyan S, Prabu M, Rajeswari N, Sanjeeviraja C (2013) Synthesis and characterization of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). J Appl Polym Sci 127(3):1538–1543CrossRefGoogle Scholar
  65. 65.
    Burba CM, Frech R (2005) Spectroscopic measurements of ionic association in solutions of LiPF6. J Phys Chem B 109(31):15161–15164CrossRefPubMedGoogle Scholar
  66. 66.
    Sharma AL, Thakur AK (2011) Polymer matrix–clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46(6):1916–1931CrossRefGoogle Scholar
  67. 67.
    Ni’mah YL, Cheng MY, Cheng JH, Rick J, Hwang BJ (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381CrossRefGoogle Scholar
  68. 68.
    Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13645CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, LondonGoogle Scholar
  70. 70.
    Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly (ethylene oxide)(PEO)–Poly (vinyl pyrrolidone)(PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262CrossRefGoogle Scholar
  71. 71.
    Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+ ion conducting solid polymer electrolyte. J Phys Condens Matter 30:165402CrossRefPubMedGoogle Scholar
  72. 72.
    Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241CrossRefGoogle Scholar
  73. 73.
    Reddy Polu A, Kumar R (2011) Impedance spectroscopy and FTIR studies of PEG-based polymer electrolytes. J Chem 8:347–353Google Scholar
  74. 74.
    Naveen Kumar P, Sasikala U, Sharma AK (2013) Investigations on conductivity and discharge profiles of novel (PEO+PEMA) polymer blend electrolyte. Int J Inno Res Sci Eng Tech 2:3575–3582Google Scholar
  75. 75.
    Koduru HK, Marino L, Scarpelli F, Petrov AG, Marinov YG, Hadjichristov GB, Iliev MT, Scaramuzza N (2017) Structural and dielectric properties of NaIO4–Complexed PEO/PVP blended solid polymer electrolytes. Curr App Phys 17:1518–1531CrossRefGoogle Scholar
  76. 76.
    Ramamohan K, Umadevi C, Achari VB, Sharma AK (2013) Conductivity studies on (PVC/PEMA) solid polymer blend electrolyte films complexed with NaIO4. Int J Plas Tech 17:139–148CrossRefGoogle Scholar
  77. 77.
    Deraman SK, Mohamed NS, Subban RH (2013) Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)-ammonium triflate-ionic liquid for proton battery. Int J Electrochem Sci 8:1459–1468Google Scholar
  78. 78.
    Laha P, Panda AB, Dahiwale S, Date K, Patil KR, Barhai PK, Das AK, Banerjee I, Mahapatra SK (2010) Effect of leakage current and dielectric constant on single and double layer oxides in MOS structure. Thin Solid Films 519(5):1530–1535CrossRefGoogle Scholar
  79. 79.
    Latif F, Aziz M, Katun N, Yahya MZ (2006) The role and impact of rubber in poly (methyl methacrylate)/lithium triflate electrolyte. J Power Sources 159:1401–1404CrossRefGoogle Scholar
  80. 80.
    Mohamad AA, Mohamed NS, Yahya MZ, Othman R, Ramesh S, Alias Y, Arof AK (2003) Ionic conductivity studies of poly (vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics 156:171–177CrossRefGoogle Scholar
  81. 81.
    Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867CrossRefPubMedGoogle Scholar
  82. 82.
    Arya A, Sadiq M, Sharma AL (2017) Effect of variation of different Nano filler on structural, electrical, dielectric and transport properties of blend polymer nanocomposites. Ionics.  https://doi.org/10.1007/s11581-017-2364-7
  83. 83.
    Arya A, Sharma AL (2017) Structural microstructural and electrochemical properties of dispersed type polymer nanocomposite films. J Phys D Appl Phys 51:045504CrossRefGoogle Scholar
  84. 84.
    Kim S, Park SJ (2007) Preparation and ion-conducting behaviors of poly (ethylene oxide)-composite electrolytes containing lithium montmorillonite. Solid State Ionics 178:973–979CrossRefGoogle Scholar
  85. 85.
    Laha P, Panda AB, Mahapatra SK, Barhai PK, Das AK, Banerjee I (2012) Development of rf plasma sputtered Al2O3–TiO2 multilayer broad band antireflecting coatings and its correlation with plasma parameters. Appl Surf Sci 258:2275–2282CrossRefGoogle Scholar
  86. 86.
    Dey A, Karan S, De SK (2013) Effect of nanoadditives on ionic conductivity of solid polymer electrolyte. Indian J Pure Appl Phys 51:281–288Google Scholar
  87. 87.
    Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222CrossRefGoogle Scholar
  88. 88.
    Ramesh S, Teh GB, Louh RF, Hou YK, Sin PY, Yi LJ (2010) Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes. Sadhana 35:87–95CrossRefGoogle Scholar
  89. 89.
    Yang CC (2002) Polymer Ni–MH battery based on PEO–PVA–KOH polymer electrolyte. J Power Sources 109:22–31CrossRefGoogle Scholar
  90. 90.
    Zhang Y, Zhao Y, Gosselink D, Chen P (2015) Synthesis of poly (ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21:381–385CrossRefGoogle Scholar
  91. 91.
    Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites. J Appl Polym Sci 118:2743–2753CrossRefGoogle Scholar
  92. 92.
    Yadav N, Mishra K, Hashmi SA (2017) Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor. Electrochim Acta 235:570–582CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Physical SciencesCentral University of PunjabBathindaIndia

Personalised recommendations