Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2515–2529 | Cite as

Enhanced electrochemical stability of carbon quantum dots-incorporated and ferrous-coordinated polypyrrole for supercapacitor

  • Yingzhi Zhou
  • Yibing XieEmail author
Original Paper


Carbon quantum dots-incorporated and ferrous-coordinated polypyrrole (CQDs/PPy-Fe) was designed as active electrode material of supercapacitors to improve electrochemical stability of PPy. The CQDs/PPy-Fe was prepared by incorporating CQDs into PPy-Fe which was formed through electropolymerization of ferrous chloride-coordinated pyrrole monomer. The ferrous-coordinated pyrrole monomer-kept tetrahedron structure could restrain volume swelling or shrinkage of PPy during the charge/discharge process, accordingly leading to improved cycling stability. In addition, the modification of CQDs could enhance the electrical conductivity of PPy and further improved rate capability of PPy. Specifically, CQDs/PPy-Fe showed lower capacity decay ratio of 45.4% than PPy (59.1%) from 1.0 to 20.0 A g−1. The capacitance retention ratio after 2000 cycles of CQDs/PPy-Fe and PPy was 94.6 and 79.4% at 20.0 A g−1, respectively. Moreover, symmetrical supercapacitor based on CQDs/PPy-Fe exhibited high capacitance and cycling stability. The design of CQDs/PPy-Fe presents the promising supercapacitor application for electrochemical energy storage.


Carbon quantum dots Electrochemical stability Ferrous-coordinated polypyrrole Supercapacitor application 


Funding information

The work was supported by National Natural Science Foundation of China (No. 21373047), Graduate Innovation Program of Jiangsu Province (KYLX16_0265), the Fundamental Research Funds for the Central Universities (2242017K41022), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefPubMedGoogle Scholar
  2. 2.
    Xie Y (2017) Overview of supercapacitance performance of graphene supported on porous substrates. Mater Tech 32:355–366CrossRefGoogle Scholar
  3. 3.
    Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefPubMedGoogle Scholar
  4. 4.
    Lu L, Xie Y, Zhao Z (2018) Improved electrochemical stability of NixCo2x(OH)6x/NiCo2O4 electrode material. J Alloys Compd 731:903–913CrossRefGoogle Scholar
  5. 5.
    Xie Y, Zhu F (2017) Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. J Solid State Electrochem 21:1675–1685CrossRefGoogle Scholar
  6. 6.
    Lu L, Xie Y (2017) Fabrication and supercapacitor behavior of phosphomolybdic acid/polyaniline/titanium nitride core-shell nanowire array. New J Chem 41:335–346CrossRefGoogle Scholar
  7. 7.
    Asiabi H, Yamini Y, Seidi S, Esrafili A, Rezaei F (2015) Electroplating of nanostructured polyaniline-polypyrrole composite coating in a stainless-steel tube for on-line in-tube solid phase microextraction. J Chromatogr 1397:19–26CrossRefGoogle Scholar
  8. 8.
    Xie Y, Tian F (2017) Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor. Mater Sci Eng B 215:64–70CrossRefGoogle Scholar
  9. 9.
    Xie Y, Gao R (2017) Electrochemical capacitance of titanium nitride modified lithium titanate nanotube array. J Alloys Compd 725:1–13CrossRefGoogle Scholar
  10. 10.
    Xie Y, Sha X (2018) Electrochemical cycling stability of nickel(II) coordinated polyaniline. Synth Met 237:29–39CrossRefGoogle Scholar
  11. 11.
    Xie Y, Du H (2015) Electrochemical capacitance of a carbon quantum dots-polypyrrole/titania nanotube hybrid. RSC Adv 5:89689–89697CrossRefGoogle Scholar
  12. 12.
    Yesi YS, Shown I, Ganguly A, Ngo TT, Chen LC, Chen KH (2016) Directly-grown hierarchical carbon nanotube@polypyrrole core-shell hybrid for high-performance flexible supercapacitors. Chemsuschem 9:370–378CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou Y, Xie Y (2017) Capacitive performance of ruthenium-coordinated polypyrrole. New J Chem 41:10312–10323CrossRefGoogle Scholar
  14. 14.
    Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939CrossRefGoogle Scholar
  15. 15.
    Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee S-T (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434CrossRefGoogle Scholar
  16. 16.
    Bhattacharya K, Deb P (2015) Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance. Dalton T 44:9221–9229CrossRefGoogle Scholar
  17. 17.
    Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118CrossRefGoogle Scholar
  18. 18.
    Zhao Z, Xie Y (2017) Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid. J Power Sources 337:54–64CrossRefGoogle Scholar
  19. 19.
    Jung H-C, Won D-H, Yoon D-J, Kim Y-S, Kim B-I (2008) A study on the electronic structures of Li intercalated vanadium sulfide and oxide. J Korean Inst Met 46:604–608Google Scholar
  20. 20.
    Chen W, Lu Z, Li CM (2008) Sensitive human interleukin 5 impedimetric sensor based on polypyrrole-pyrrolepropylic acid-gold nanocomposite. Anal Chem 80:8485–8492CrossRefPubMedGoogle Scholar
  21. 21.
    Chen LJ, Guo CX, Zhang QM, Lei YL, Xie JL, Ee SJ, Guai GH, Song QL, Li CM (2013) Graphene Quantum-Dot-Doped Polypyrrole Counter Electrode for High-Performance Dye-Sensitized Solar Cells. Acs Appl Mater Interface 5:2047–2052CrossRefGoogle Scholar
  22. 22.
    Demchenko AP, Dekaliuk MO (2013) Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc 1:1–17Google Scholar
  23. 23.
    Li Y, Wang SF, Zhang Y, Zhang YX (2005) Electrical properties and morphology of polypropylene/epoxy/glass fiber composites filled with carbon black. J Appl Polym Sci 98:1142–1149CrossRefGoogle Scholar
  24. 24.
    Chen J, Shu J, Zhang A, Heng J, Yan Z, Chen J (2016) Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of rhodamine B and cefradine. Diamond Relat Mater 70:137–144CrossRefGoogle Scholar
  25. 25.
    Li Y, Zhong Y, Zhang Y, Weng W, Li S (2015) Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors Actuators B: Chem 206:735–743CrossRefGoogle Scholar
  26. 26.
    Stempien Z, Rybicki T, Rybicki E, Kozanecki M, Szynkowska MI (2015) In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth Met 202:49–62CrossRefGoogle Scholar
  27. 27.
    Banu A, Marcu M, Alexandrescu E, Anghel EM (2014) Electrochemical deposition and characterization of polyppyrrole coatings doped with nickel cobalt oxide for environmental applications. J Solid State Electrochem 18:2661–2671CrossRefGoogle Scholar
  28. 28.
    Wang WL, Wu YH, Li LH, Yan N, Wei B (2017) Homogeneous granular microstructures developed by phase separation and rapid solidification of liquid Fe-Sn immiscible alloy. J Alloys Compd 693:650–657CrossRefGoogle Scholar
  29. 29.
    Padwal PM, Kadam SL, Mane SM, Kulkarni SB (2016) Enhanced specific capacitance and supercapacitive properties of polyaniline-iron oxide (PANI-Fe2O3) composite electrode material. J Mater Sci 51:10499–10505CrossRefGoogle Scholar
  30. 30.
    Vequizo JJM, Zhang C, Ichimura M (2015) Fabrication of Cu2O/Fe-O heterojunction solar cells by electrodeposition. Thin Solid Films 597:83–87CrossRefGoogle Scholar
  31. 31.
    Yuasa M, Yamaguchi A, Itsuki H, Tanaka K, Yamamoto M, Oyaizu K (2005) Modifying carbon particles with polypyrrole for adsorption of cobalt ions as electrocatatytic site for oxygen reduction. Chem Mater 17:4278–4281CrossRefGoogle Scholar
  32. 32.
    Demoustier-Champagne S, Stavaux PY (1999) Effect of electrolyte concentration and nature on the morphology and the electrical properties of electropolymerized polypyrrole nanotubules. Chem Mater 11:829–834CrossRefGoogle Scholar
  33. 33.
    Furukawa Y, Tazawa S, Fujii Y, Harada I (1988) Raman-spectra of polypyrrole and its 2,5-C-13-substituted and c-deuterated analogs in doped and undoped states. Synth Met 24:329–341CrossRefGoogle Scholar
  34. 34.
    Shereema RM, Sruthi TV, Kumar VBS, Rao TP, Shankar SS (2015) Angiogenic profiling of synthesized carbon quantum dots. Biochem 54:6352–6356CrossRefGoogle Scholar
  35. 35.
    Duchet J, Legras R, Demoustier-Champagne S (1998) Chemical synthesis of polypyrrole: structure-properties relationship. Synth Met 98:113–122CrossRefGoogle Scholar
  36. 36.
    Wilbourn K, Murray RW (1988) Electrochemical doping reactions of the conducting ladder polymer benzimidazobenzophenanthroline (BBL). Macromol 21:89–96CrossRefGoogle Scholar
  37. 37.
    Gupta S (2008) Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. J Raman Spectrosc 39:1343–1355CrossRefGoogle Scholar
  38. 38.
    Iturregui A, Arrieta N, Aramendia J, Arrizabalaga I, Murelaga X, Ignacio Baceta J, Angeles Olazabal M, Martinez-Arkarazo I, Manuel Madariaga J (2016) In-situ and laboratory Raman spectroscopic analysis on beachrock deposits: Characterisation of the trapped materials. J Raman Spectrosc 47:329–336CrossRefGoogle Scholar
  39. 39.
    Ortiz-Morales M, Soto-Bernal JJ, Frausto-Reyes C, Acosta-Ortiz SE, Gonzalez-Mota R, Rosales-Candelas I (2015) Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel. Spectrochim Acta Part A 145:505–510CrossRefGoogle Scholar
  40. 40.
    Banisharif A, Khodadadi AA, Mortazavi Y, Firooz AA, Beheshtian J, Agah S, Menbari S (2015) Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: Experimental and computational studies. Appl Catal B 165:209–221CrossRefGoogle Scholar
  41. 41.
    Di Genova D, Hess K-U, Oryaelle Crevrel M, Dingwell DB (2016) Models for the estimation of Fe3+/Fe-tot ratio in terrestrial and extraterrestrial alkali- and iron-rich silicate glasses using Raman spectroscopy. Am Mineral 101:943–952CrossRefGoogle Scholar
  42. 42.
    Baek M-H, Ijagbemi CO, Kim D-S (2010) Spectroscopic studies on the oxidative decomposition of Malachite Green using ozone. J Environ Sci Health Part A 45:630–636CrossRefGoogle Scholar
  43. 43.
    Konwer S, Maiti J, Dolui SK (2011) Preparation and optical/electrical/electrochemical properties of expanded graphite-filled polypyrrole nanocomposite. Mater Chem Phys 128:283–290CrossRefGoogle Scholar
  44. 44.
    Deng JG, Peng YX, He CL, Long XP, Li P, Chan ASC (2003) Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure. Polym Int 52:1182–1187CrossRefGoogle Scholar
  45. 45.
    Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polym 53:923–932CrossRefGoogle Scholar
  46. 46.
    Konwer S, Boruah R, Dolui SK (2011) Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode. J Electron Mater 40:2248–2255CrossRefGoogle Scholar
  47. 47.
    Kakaei K, Javan H, Khamforoush M, Zarei SA (2016) Fabrication of new gas diffusion electrode based on carbon quantum dot and its application for oxygen reduction reaction. Int J Hydrogen Energy 41:14684–14691CrossRefGoogle Scholar
  48. 48.
    Wang W, Ni Y, Xu Z (2015) One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application. J Alloys Compd 622:303–308CrossRefGoogle Scholar
  49. 49.
    Chernyak V, Reisfeld R (1991) Spectroscopic behavior of malachite green in sol-gel glasses. Chem Phys Lett 181:39–44CrossRefGoogle Scholar
  50. 50.
    Ryu KY, Lee SY, Park DY, Kim SY, Kim C (2017) A novel colorimetric chemosensor for detection of Co2+ and S2− in an aqueous environment. Sensors Actuators B: Chem 242:792–800CrossRefGoogle Scholar
  51. 51.
    Tamer Ö (2017) A unique manganese (II) complex of 4-methoxy-pyridine-2-carboxylate: Synthesis, crystal structure, FT-IR and UV-Vis spectra and DFT calculations. J Mol Struct 1144:370–378CrossRefGoogle Scholar
  52. 52.
    Guai GH, Song QL, Guo CX, Lu ZS, Chen T, Ng CM, Li CM (2012) Graphene-Pt\ITO counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Solar Energy 86:2041–2048CrossRefGoogle Scholar
  53. 53.
    Gudyma I, Ivashko V, Bobak A (2017) Surface and size effects in spin-crossover nanocrystals. Nanoscale Res Lett 12:101–106CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ye S, Fang L, Lu Y (2009) Contribution of charge-transfer effect to surface-enhanced IR for Ag@PPy nanoparticles. Phys Chem Chem Phys 11:2480–2484CrossRefPubMedGoogle Scholar
  55. 55.
    Cui X, Lv R, Sagar RUR, Liu C, Zhang Z (2015) Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim Acta 169:342–350CrossRefGoogle Scholar
  56. 56.
    Raymundo-Pinero E, Kierzek K, Machnikowski J, Beguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507CrossRefGoogle Scholar
  57. 57.
    Hsieh C-T, Hsu S-M, Lin J-Y, Teng H (2011) Electrochemical capacitors based on graphene oxide sheets usingdifferent aqueous electrolytes. J Phys Chem C 115:12367–12374CrossRefGoogle Scholar
  58. 58.
    Zhang L, Wang W, Cheng J, Shi Y, Zhang Q, Dou P, Xu X (2017) Skeleton networks of graphene wrapped double-layered polypyrrole/polyaniline nanotubes for supercapacitor applications. J Mater Sci 53:787–798CrossRefGoogle Scholar
  59. 59.
    Jian X, Li JG, Yang HM, Cao LL, Zhang EH, Liang ZH (2017) Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon 114:533–543CrossRefGoogle Scholar
  60. 60.
    Li S, Zhao C, Shu K, Wang C, Guo ZP, Wallace GG, Liu HK (2014) Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon 79:554–562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations