Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2507–2513 | Cite as

Electrochemical studies of novel olivine-layered (LiFePO4-Li2MnO3) dual composite as an alternative cathode material for lithium-ion batteries

  • Rakesh Saroha
  • Amrish K. Panwar
  • Anurag Gaur
  • Yogesh Sharma
  • Vinay Kumar
  • Pawan K. Tyagi
Original Paper
  • 183 Downloads

Abstract

In the present work, olivine-layered composites, i.e., LiFePO4-Li2MnO3, are successfully synthesized in the form of a single monolithic electrode and layer arrangement. X-ray diffraction (XRD) patterns revealed that the prepared compositions exhibit the peaks correspond to the layered m-Li2MnO3 (C2/m space group) and orthorhombic LiFePO4 with Pnma space group. Microstructural investigations indicate that all the samples possess nearly same morphology with a combination of smaller as well as bigger grains. CV results demonstrate that all the prepared samples possess anodic peak around 3.6 and 4.7 V along with a broad cathodic peak around 3.2 V which is due to intercalation of Li-ion at 16c octahedral sites of the spinel structure formed by MnO2. Among all the compositions, layer arrangement of LiFePO4 and Li2MnO3, i.e. LFP/LMO layered arrangement, shows the best cycling and rate performances. LFP/LMO exhibits a discharge capacity of 178 ± 5 mA h/g at a current density 10 mA/g and holds 98% of the capacity up to 100 charge/discharge cycles measured at 20 mA/g.

Keywords

Olivine-layered composite Electrochemical performance 

References

  1. 1.
    Denis YW, Yanagida K, Kato Y, Nakamura HI (2009) Electrochemical activities in Li2MnO3. J Electrochem Soc 156(6):A417–A424CrossRefGoogle Scholar
  2. 2.
    Lin J, Mu D, Jin Y, Wu B, Ma Y, Wu F (2013) Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 230:76–80CrossRefGoogle Scholar
  3. 3.
    Saroha R, Gupta A, Panwar AK (2017) Electrochemical performances of Li-rich layered-layered Li2MnO3-LiMnO2 solid solutions as cathode material for lithium-ion batteries. J Alloys Compd 696:580–589CrossRefGoogle Scholar
  4. 4.
    Dong X, Xu Y, Xiong L, Sun X, Zhang Z (2013) Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material. J Power Sources 243:78–87CrossRefGoogle Scholar
  5. 5.
    Zhang Q, Hu X, Zhan D, Peng T (2013) Pyrolysis of in situ formed lithium stearate: an effective strategy to activate Li2MnO3. Electrochim Acta 113:424–432CrossRefGoogle Scholar
  6. 6.
    Yang G, Wang L, Wang J, Yan W (2017) Fabrication and formation mechanism of Li2MnO3 ultrathin porous nanobelts by electrospinning. Ceram Int 43(1, Part A):71–76CrossRefGoogle Scholar
  7. 7.
    Torres-Castro L, Shojan J, Julien CM, Huq A, Dhital C, Paranthaman MP, Katiyar RS, Manivannan A (2015) Synthesis, characterization and electrochemical performance of Al-substituted Li2MnO3. Mater Sci Eng B 201:13–22CrossRefGoogle Scholar
  8. 8.
    Kim D, Gim J, Lim J, Park S, Kim J (2010) Synthesis of xLi2MnO3·(1−x)LiMO2 (M= Cr, Mn, Co, Ni) nanocomposites and their electrochemical properties. Mater Res Bull 45(3):252–255CrossRefGoogle Scholar
  9. 9.
    Park C, Kim S, Mangani IR, Lee J, Boo S, Kim J (2007) Synthesis and materials characterization of Li2MnO3–LiCrO2 system nanocomposite electrode materials. Mater Res Bull 42(7):1374–1383CrossRefGoogle Scholar
  10. 10.
    Kim S, Kim C, Noh JK, Yu S, Kim SJ, Chang W, Choi WC, Chung KY, Cho BW (2012) Synthesis of layered–layered xLi2MnO3·(1−x)LiMO2 (M= Mn, Ni, Co) nanocomposite electrodes materials by mechanochemical process. J Power Sources 220:422–429CrossRefGoogle Scholar
  11. 11.
    Sun Y, Shiosaki Y, Xia Y, Noguchi H (2006) The preparation and electrochemical performance of solid solutions LiCoO2–Li2MnO3 as cathode materials for lithium ion batteries. J Power Sources 159(2):1353–1359CrossRefGoogle Scholar
  12. 12.
    Rossouw MH, Thackeray MM (1991) Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mater Res Bull 26(6):463–473CrossRefGoogle Scholar
  13. 13.
    Zhao W, Xiong L, Xu Y, Xiao X, Wang J, Ren Z (2016) Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material. J Power Sources 330:37–44CrossRefGoogle Scholar
  14. 14.
    Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi K, Imaizumi J, Nitta Y (2010) Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J Power Sources 195(3):834–844CrossRefGoogle Scholar
  15. 15.
    Mori D, Sakaebe H, Shikano M, Kojitani H, Tatsumi K, Inaguma Y (2011) Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. J Power Sources 196(16):6934–6938CrossRefGoogle Scholar
  16. 16.
    Cheng M, Zhu K, Yang L, Zhu L, Li Y, Tang W (2016) Electrochemical properties of Li2MnO3 nanowires with polycrystalline and monocrystalline states. J Alloys Compd 686:496–502CrossRefGoogle Scholar
  17. 17.
    Padhi AK, Nanjundaswamy K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  18. 18.
    Lin X, Wu K, Shao L, Shui M, Wang D, Long N, Ren Y, Shu J (2014) In situ growth of coiled carbon nanotubes on LiFePO4 as high performance lithium storage material. J Electroanal Chem 726:71–76CrossRefGoogle Scholar
  19. 19.
    Lv YJ, Su J, Long YF, Cui XR, Lv XY, Wen YX (2014) Effects of ball-to-powder weight ratio on the performance of LiFePO4/C prepared by wet-milling assisted carbothermal reduction. Powder Technol 253:467–473CrossRefGoogle Scholar
  20. 20.
    Qin G, Ma Q, Wang C (2014) A porous C/LiFePO 4/multiwalled carbon nanotubes cathode material for lithium ion batteries. Electrochim Acta 115:407–415CrossRefGoogle Scholar
  21. 21.
    Huang K-P, Fey GT-K, Lin Y-C, Wu P-J, Chang J-K, Kao H-M (2017) Magnetic impurity effects on self-discharge capacity, cycle performance, and rate capability of LiFePO4/C composites. J Solid State Electrochem 21(6):1767–1775CrossRefGoogle Scholar
  22. 22.
    Swiderska-Mocek A, Lewandowski A (2017) Kinetics of Li-ion transfer reaction at LiMn2O4, LiCoO2, and LiFePO4 cathodes. J Solid State Electrochem 21(5):1365–1372CrossRefGoogle Scholar
  23. 23.
    Cai G, Fung KY, Ng KM, Chu KL, Hui K, Xue L (2016) Critical assessment of particle quality of commercial LiFePO4 cathode material using coin cells—a causal table for lithium-ion battery performance. J Solid State Electrochem 20(2):379–387CrossRefGoogle Scholar
  24. 24.
    Chiu Huang CK, Huang H-YS (2015) Critical lithiation for C-rate dependent mechanical stresses in LiFePO4. J Solid State Electrochem 19(8):2245–2253CrossRefGoogle Scholar
  25. 25.
    Mathew V, Gim J, Kim E, Alfaruqi MH, Song J, Ahn D, Im WB, Paik Y, Kim J (2014) A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. J Solid State Electrochem 18(6):1557–1567CrossRefGoogle Scholar
  26. 26.
    Buzlukov A, Gerbaud G, Bourbon C, Hediger S, De Paëpe G, Patoux S, Bardet M (2013) Application of 7 Li NMR to characterize the evolution of intercalated and non-intercalated lithium in LiFePO 4-based materials for Li-ion batteries. J Solid State Electrochem 17(5):1421–1427CrossRefGoogle Scholar
  27. 27.
    Whitacre J, Zaghib K, West W, Ratnakumar B (2008) Dual active material composite cathode structures for Li-ion batteries. J Power Sources 177(2):528–536CrossRefGoogle Scholar
  28. 28.
    Saroha R, Panwar AK, Sharma Y (2017) Physicochemical and electrochemical performance of LiFe1−xNixPO4 (0≤ x ≤1.0) solid solution as potential cathode material for rechargeable lithium-ion battery. Ceram Int 43(7):5734–5742CrossRefGoogle Scholar
  29. 29.
    Saroha R, Panwar AK, Sharma Y, Tyagi PK, Ghosh S (2017) Development of surface functionalized ZnO-doped LiFePO4/C composites as alternative cathode material for lithium ion batteries. Appl Surf Sci 394:25–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rakesh Saroha
    • 1
  • Amrish K. Panwar
    • 1
  • Anurag Gaur
    • 2
  • Yogesh Sharma
    • 3
  • Vinay Kumar
    • 1
  • Pawan K. Tyagi
    • 1
  1. 1.Department of Applied PhysicsDelhi Technological UniversityDelhiIndia
  2. 2.Department of PhysicsNational Institute of Technology KurukshetraKurukshetraIndia
  3. 3.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations