Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2579–2586 | Cite as

Dual-functional electrochromic and energy-storage electrodes based on tungsten trioxide nanostructures

  • Xiaoli He
  • Xiaomin Li
  • Zhijie Bi
  • Yongbo Chen
  • Xiaoke Xu
  • Xiangdong Gao
Original Paper
  • 77 Downloads

Abstract

In this paper, high-performance dual-functional electrodes based on tungsten trioxide (WO3) nanostructures are developed, which successfully realize the combination of electrochromism and energy storage. The WO3 nanostructures with various morphologies (nanospindles, nanopetals, nanosheets, and nanobricks) were prepared via a facile hydrothermal process. It has been found that the WO3 nanosheets possess large surface area and porous architecture, significantly increasing the amount of active sites and facilitating the transport of Li+ ions. As dual-functional electrode, WO3 nanosheets present enhanced electrochemical properties including wide optical modulation (64.5%), fast switching time (6.6/3.8 s), great coloration efficiency (48.9 cm2 C−1), and high areal capacitance (14.9 mF cm−2). Furthermore, the WO3 nanosheets could bridge electrochromic behaviors with energy storage by changing color during the charge/discharge processes. The results demonstrate great potential of WO3 nanosheets for electrochromism and energy storage applications.

Graphical abstract

Keywords

WO3 nanostructures Dual-functional Electrochromic Energy-storage 

Notes

Funding information

This work was supported by the National Key R&D Program of China (Grant No. 2016YFA0201103); the National Natural Science Foundation of China (Grant No. 51572280); and the Foundation of the Shanghai Committee for Science and Technology (Grant No. 15JC1403600).

Supplementary material

10008_2018_3959_MOESM1_ESM.docx (8.4 mb)
ESM 1 (DOCX 8552 kb)

References

  1. 1.
    Cai GF, Tu JP, Zhou D, Wang XL, Gu CD (2014) Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol Energy Mater Sol Cells 124:103–110CrossRefGoogle Scholar
  2. 2.
    Wang P, Hu J, Cao G, Zhang S, Zhang P, Liang C, Wang Z, Shao G (2018) Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance. Appl Surf Sci 435:1150–1158CrossRefGoogle Scholar
  3. 3.
    Runnerstrom EL, Llordes A, Lounis SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50(73):10555–10572CrossRefGoogle Scholar
  4. 4.
    Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan H (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6(10):5008–5048CrossRefGoogle Scholar
  5. 5.
    Xiao X, Ding T, Yuan L, Shen Y, Zhong Q, Zhang X, Cao Y, Hu B, Zhai T, Gong L, Chen J, Tong Y, Zhou J, Wang ZL (2012) WO3-x/MoO3-x Core/Shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater 2(11):1328–1332CrossRefGoogle Scholar
  6. 6.
    Bi Z, Li X, Chen Y, He X, Xu X, Gao X (2017) Large-scale multifunctional electrochromic-energy storage device based on tungsten trioxide monohydrate nanosheets and Prussian white. ACS Appl Mater Interfaces 9(35):29872–29880CrossRefGoogle Scholar
  7. 7.
    Cai GF, Cui MQ, Kumar V, Darmawan P, Wang JX, Wang X, Eh ALS, Qian K, Lee PS (2016) Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chem Sci 7(2):1373–1382CrossRefGoogle Scholar
  8. 8.
    Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19(7):394–402CrossRefGoogle Scholar
  9. 9.
    Yeh M, Lin L, Yang P, Wang Z (2015) Motion-driven electrochromic reactions for self-powered smart window system. ACS Nano 9(5):4757–4765CrossRefGoogle Scholar
  10. 10.
    Cai G, Wang J, Lee PS (2016) Next-generation multifunctional electrochromic devices. Acc Chem Res 49(8):1469–1476CrossRefGoogle Scholar
  11. 11.
    Yan C, Kang W, Wang J, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2013) Stretchable and wearable electrochromic devices. ACS Nano 8(1):316–322CrossRefGoogle Scholar
  12. 12.
    Chen Y, Bi Z, Li X, Xu X, Zhang S, Hu X (2017) High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochim Acta 224:534–540CrossRefGoogle Scholar
  13. 13.
    Hu X, Zhang W, Liu X, Mei Y, Huang Y (2015) Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev 44(8):2376–2404CrossRefGoogle Scholar
  14. 14.
    Cai G, Wang X, Cui M, Darmawan P, Wang J, AL-S E, Lee PS (2015) Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12:258–267CrossRefGoogle Scholar
  15. 15.
    Huang Y, Zhu M, Huang Y, Pei Z, Li H, Wang Z, Xue Q, Zhi C (2016) Multifunctional energy storage and conversion devices. Adv Mater 28(38):8344–8364CrossRefGoogle Scholar
  16. 16.
    Li W, Li G, Sun J, Zou R, Xu K, Sun Y, Chen Z, Yang J, Hu J (2013) Hierarchical heterostructures of MnO2 nanosheets or nanorods grown on Au-coated Co3O4 porous nanowalls for high-performance pseudocapacitance. Nanoscale 5(7):2901–2908CrossRefGoogle Scholar
  17. 17.
    Wei D, Scherer MR, Bower C, Andrew P, Ryhänen T, Steiner U (2012) A nanostructured electrochromic supercapacitor. Nano Lett 12(4):1857–1862CrossRefGoogle Scholar
  18. 18.
    Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruna HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12(6):518–522CrossRefGoogle Scholar
  19. 19.
    Inamdar AI, Kim J, Jo Y, Woo H, Cho S, Pawar SM, Lee S, Gunjakar JL, Cho Y, Hou B, Cha S, Kwak J, Park Y, Kim H, Im H (2017) Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Sol Energy Mater Sol Cells 166:78–85CrossRefGoogle Scholar
  20. 20.
    Xia XH, Ku ZL, Zhou D, Zhong Y, Zhang YQ, Wang YD, Huang MJ, Tu JP, Fan HJ (2016) Perovskite solar cell powered electrochromic batteries for smart windows. Mater Horiz 3(6):588–595CrossRefGoogle Scholar
  21. 21.
    Cai G, Tu J, Zhou D, Li L, Zhang J, Wang X, Gu C (2014) The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm 16(30):6866–6872CrossRefGoogle Scholar
  22. 22.
    Hu J, Wang L, Zhang P, Liang C, Shao G (2016) Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J Power Sources 328:28–36CrossRefGoogle Scholar
  23. 23.
    Poongodi S, Kumar PS, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S (2015) Synthesis of hierarchical WO3 nanostructured thin films with enhanced electrochromic performance for switchable smart windows. RSC Adv 5(117):96416–96427CrossRefGoogle Scholar
  24. 24.
    Xiao Y, Xu C, Zhang W (2017) Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting. J Solid State Electrochem 21(11):3355–3364CrossRefGoogle Scholar
  25. 25.
    Gao L, Wang X, Xie Z, Song W, Wang L, Wu X, Qu F, Chen D, Shen G (2013) High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J Mater Chem A 1(24):7167–7173CrossRefGoogle Scholar
  26. 26.
    Huang B, Lin T, Liu Y (2015) WO3/TiO2 core-shell nanostructure for high performance energy-saving smart windows. Sol Energy Mater Sol Cells 133:32–38CrossRefGoogle Scholar
  27. 27.
    Wang J, Zhang L, Yu L, Jiao Z, Xie H, Lou X, Sun X (2014) A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat Commun 5:4921CrossRefGoogle Scholar
  28. 28.
    Peng M, Zhang Y, Song L, Yin X, Wang P, Wu L, Hu X (2017) Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering. J Inorg Mater 32(3):287–292CrossRefGoogle Scholar
  29. 29.
    Huang X, Liu H, Zhang X, Jiang H (2015) High performance all-solid-state flexible micro-pseudocapacitor based on hierarchically nanostructured tungsten trioxide composite. ACS Appl Mater Interfaces 7(50):27845–27852CrossRefGoogle Scholar
  30. 30.
    Samu GF, Pencz K, Janáky C, Rajeshwar K (2015) On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures. J Solid State Electrochem 19(9):2741–2751CrossRefGoogle Scholar
  31. 31.
    Hu J, Wang P, Liu P, Cao G, Wang Q, Wei M, Mao J, Liang C, Shao G (2016) In situ fabrication of nano porous NiO-capped Ni3P film as anode for li-ion battery with different lithiation path and significantly enhanced electrochemical performance. Electrochim Acta 220:258–266CrossRefGoogle Scholar
  32. 32.
    Sun W, Yeung M, Lech A, Lin C, Lee C, Li T, Duan X, Zhou J, Kaner RB (2015) High surface area tunnels in hexagonal WO3. Nano Lett 15(7):4834–4838CrossRefGoogle Scholar
  33. 33.
    Zhou D, Shi F, Xie D, Wang D, Xia X, Wang X, Gu C, Tu J (2016) Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J Colloid Interface Sci 465:112–120CrossRefGoogle Scholar
  34. 34.
    Reyes-Gil KR, Stephens ZD, Stavila V, Robinson DB (2015) Composite WO3/TiO2 nanostructures for high electrochromic activity. ACS Appl Mater Interfaces 7(4):2202–2213CrossRefGoogle Scholar
  35. 35.
    Su J, Feng X, Sloppy JD, Guo L, Grimes CA (2010) Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett 11(1):203–208CrossRefGoogle Scholar
  36. 36.
    Ghosh K, Roy A, Tripathi S, Ghule S, Singh AK, Ravishankar N (2017) Insights into nucleation, growth and phase selection of WO3: morphology control and electrochromic properties. J Mater Chem C 5(29):7307–7316CrossRefGoogle Scholar
  37. 37.
    Wang L, Fan J, Cao Z, Zheng Y, Yao Z, Shao G, Hu J (2014) Fabrication of predominantly Mn4+-doped TiO2 nanoparticles under equilibrium conditions and their application as visible-light photocatalyts. Chem Asian J 9(7):1904–1912CrossRefGoogle Scholar
  38. 38.
    Park H, Kim DS, Hong SY, Kim C, Yun JY, Oh SY, Jin SW, Jeong YR, Kim GT, Ha JS (2017) A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale 9(22):7631–7640CrossRefGoogle Scholar
  39. 39.
    Bi Z, Li X, Chen Y, Xu X, Zhang S, Zhu Q (2017) Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochim Acta 227:61–68CrossRefGoogle Scholar
  40. 40.
    Chuminjak Y, Daothong S, Reanpang P, Mensing JP, Phokharatkul D, Jakmunee J, Wisitsoraat A, Tuantranont A, Singjai P (2015) Electrochemical energy-storage performances of nickel oxide films prepared by a sparking method. RSC Adv 5(83):67795–67802CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoli He
    • 1
    • 2
  • Xiaomin Li
    • 1
  • Zhijie Bi
    • 1
    • 2
  • Yongbo Chen
    • 1
    • 2
  • Xiaoke Xu
    • 1
    • 3
  • Xiangdong Gao
    • 1
  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations