Electrochemical co-reduction of Y(III) and Zn(II) and extraction of yttrium on Zn electrode in LiCl-KCl eutectic melts

Original Paper
  • 11 Downloads

Abstract

This work presents an electrochemical study of Y(III) ions on W electrode and liquid Zn electrode and co-reduction mechanism of Y(III) and Zn(II) on W electrode in LiCl-KCl eutectic melts. Cyclic voltammogram and current reversal chronopotentiogram revealed that the electrochemical reaction of Y(III) on W electrode proceeds a single step mechanism of Y(III) to Y(0). On liquid Zn electrode, the deposition potential of Y(III) is more positive than that on W electrode due to the formation of Y-Zn solution and the reduction process was found to be a diffusion controlled and quasi-reversible at lower scan rate of 0.1 V/s. Based on the results of cyclic voltammometry, square wave voltammetry, and chronopoteniometry, the Y-Zn intermetallics could be formed by co-reduction process of Y(III) and Zn(II) on W electrode in LiCl-KCl-ZnCl2-YCl3 molten salts. Moreover, the electrochemical extracting metallic Y was conducted by galvanostatic and potentiostatic electrolysis on liquid Zn electrode. Electrolysis products consisted of Zn and YZn12 phases characterized by scanning electron microscopy with energy dispersive spectrometry and X-ray diffraction. Meanwhile, the change of Y(III) concentration in LiCl-KCl eutectic melts was detected by inductive coupled plasma atomic emission spectrometer and the extraction efficiency could be estimated.

Keywords

Electrochemical behavior Co-reduction Liquid Zn electrode Zn-Y intermetallic compounds Extraction efficiency 

References

  1. 1.
    Gibilaro M, Massot L, Chamelot R, Taxil P (2009) Co-reduction of aluminium and lanthanide ions in molten fluorides: application to cerium and samarium extraction from nuclear wastes. Electrochim Acta 54(22):5300–5306CrossRefGoogle Scholar
  2. 2.
    Kinoshita K, Tadafumi K, Tadashi I, Ougier M, Glatz JP (2005) Separation of actinides from rare earth elements by means of molten salt electrorefining with anodic dissolution of U-Pu-Zr alloy fuel. J Phys Chem Solids 66(2–4):619–624CrossRefGoogle Scholar
  3. 3.
    Soucek P, Malmbeck R, Mendes E, Nourry C, Glatz JP (2010) Exhaustive electrolysis for recovery of actinides from molten LiCl-KCl using solid aluminium cathodes. J Radioanal Nucl Chem 286(3):823–828CrossRefGoogle Scholar
  4. 4.
    Castrillejo Y, Fernandez P, Medina J, Vega M, Barrado E (2011) Chemical and electrochemical extraction of ytterbium from molten chlorides in pyrochemical processes. Electroanalysis 23(1):222–236CrossRefGoogle Scholar
  5. 5.
    Su LL, Liu K, Liu YL, Wang L, Yuan LY, Wang L, Li ZJ, Zhao XL, Chai ZF, Shi WQ (2014) Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts. Electrochim Acta 147(20):87–95CrossRefGoogle Scholar
  6. 6.
    Yang YS, Zhang ML, Han W, Jiang HL, Li M, Ye K, Yan YL (2014) Selective extraction of gadolinium from Sm2O3 and Gd2O3 mixtures in a single step assisted by MgCl2 in LiCl-KCl melts. J Solid State Electrochem 18(3):843–850CrossRefGoogle Scholar
  7. 7.
    Li M, Gu QQ, Han W, Yan YD, Zhang ML, Sun Y, Shi WQ (2015) Electrodeposition of Tb on Mo and Al electrodes: thermodynamic properties of TbCl3 and TbAl2 in the LiCl-KCl eutectic melts. Electrochim Acta 167(10):139–146CrossRefGoogle Scholar
  8. 8.
    Li M, Liu B, Ji N, Sun Y, Han W, Jiang T, Peng SM, Yan YD, Zhang ML (2016) Electrochemical extracting variable valence ytterbium from LiCl-KCl-YbCl3 melt on Cu electrode. Electrochim Acta 193(1):54–62CrossRefGoogle Scholar
  9. 9.
    Li M, Sun TT, Liu B, Han W, Sun Y, Zhang ML (2015) Electrochemical behavior of Dy (III) and selective formation of Dy-Ni intermetallic compounds in LiCl-KCl eutectic melts. Acta Phys -Chim Sin 31(2):309–314Google Scholar
  10. 10.
    Nourry C, Massot L, Chamelot P, Taxil P (2009) Electrochemical reduction of Gd(III) and Nd(III) on reactive cathode material in molten fluoride media. J Appl Electrochem 39(6):927–933CrossRefGoogle Scholar
  11. 11.
    Vandarkuzhali S, Chandra M, Ghosh S, Samanta N, Nedumaran S, Reddy BP, Nagarajan K (2014) Investigation on the electrochemical behavior of neodymium chloride at W, Al and Cd electrodes in molten LiCl-KCl eutectic. Electrochim Acta 145(1):86–98CrossRefGoogle Scholar
  12. 12.
    Wang YC, Li M, Han W, Zhang ML, Jiang T, Peng SM, Yan YD (2017) Electrochemical behaviour of erbium(III) and its extraction on Cu electrode in LiCl-KCl melts. J Alloys Compd 695(25):3484–3494CrossRefGoogle Scholar
  13. 13.
    Wang YC, Li M, Han W, Zhang ML, Yang YS, Sun Y, Zhao YC, Yan YD (2015) Electrochemical extraction and separation of praseodymium and erbium on reactive magnesium electrode in molten salts. J Solid State Electrochem 19(12):3629–3638CrossRefGoogle Scholar
  14. 14.
    Li M, Gu QQ, Han W, Zhang XM, Sun Y, Zhang ML, Yan YD (2015) Electrochemical behavior of La(III) on liquid Bi electrode in LiCl-KCl melts determination of thermodynamic properties of La-Bi and Li-Bi intermetallic compounds. RSC Adv 5(100):82471–82480CrossRefGoogle Scholar
  15. 15.
    Han W, Li ZY, Li M, Li WL, Zhang XM, Yang XG, Zhang ML, Sun Y (2017) Electrochemical extraction of holmium and thermodynamic properties of Ho-Bi alloys in LiCl-KCl eutectic. J Electrochem Soc 164(4):E62–E70CrossRefGoogle Scholar
  16. 16.
    Castrillejo Y, Bermejo MR, Arocas PD, Rosa FDL, Barrado E (2005) Electrode reaction of cerium into liquid bismuth in the eutectic LiCl-KCl. Electrochemistry 73(3):636–643Google Scholar
  17. 17.
    Kato T, Inoue T, Iwai T, Arai Y (2006) Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode. J Nucl Mater 357(1–3):105–114CrossRefGoogle Scholar
  18. 18.
    Wang L, Liu YL, Liu K, Tang SL, Yuan LY, Lu T, Chai ZF, Shi WQ (2015) Electrochemical extraction of cerium by forming Ce-Zn alloys in LiCl-KCl eutectic on W and liquid Zn electrodes. J Electrochem Soc 162(9):E179–E184CrossRefGoogle Scholar
  19. 19.
    Li M, Wang J, Han W, Yang XG, Zhang M, Sun Y, Zhang ML, Yan YD (2017) Electrochemical formation and thermodynamic evaluation of Pr-Zn intermetallic compounds in LiCl-KCl eutectic melts. Electrochim Acta 228(20):299–307CrossRefGoogle Scholar
  20. 20.
    Liu YL, Ye GA, Liu K, Yuan LY, Chai ZF, Shi WQ (2015) Electrochemical behavior of La(III) on the zinc-coated W electrode in LiCl-KCl eutectic. Electrochim Acta 168(20):206–215CrossRefGoogle Scholar
  21. 21.
    Luo LX, Liu YL, Liu N, Wang L, Yuan LY, Chai ZF, Shi WQ (2016) Electrochemical and thermodynamic properties of Nd(III)/Nd(0) couple at liquid Zn electrode in LiCl-KCl melt. Electrochim Acta 191(10):1026–1036CrossRefGoogle Scholar
  22. 22.
    Liu YL, Yuan LY, Liu K, Ye GA, Zhang ML, He H, Tang HB, Lin RS, Chai ZF, Shi WQ (2014) Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys. Electrochim Acta 120(20):369–378CrossRefGoogle Scholar
  23. 23.
    Zhou W, Liu YL, Liu K, Liu ZR, Yuan LY, Wang L, Feng YX, Chai ZF, Shi WQ (2015) Electroreduction of Gd3+ on W and Zn electrodes in LiCl-KCl eutectic: a comparison study. J Electrochem Soc 162(10):D531–D539CrossRefGoogle Scholar
  24. 24.
    Luo X, Liu YL, Liu N, Liu K, Pang JW, Yuan LY, Chai ZF, Shi WQ (2017) Kinetics process of Tb(III)/Tb couple at liquid Zn electrode and thermodynamic properties of Tb-Zn alloys formation. Sci China Chem 60(6):813–821CrossRefGoogle Scholar
  25. 25.
    Liu YL, Zhou W, Tang HB, Liu ZR, Liu K, Yuan LY, Feng YX, Chai ZF, Shi WQ (2016) Diffusion coefficient of Ho3+at liquid zinc electrode and co-reduction behaviors of Ho3+ and Zn2+ on W electrode in the LiCl-KCl eutectic. Electrochim Acta 211(1):313–321CrossRefGoogle Scholar
  26. 26.
    Yan YD, Li X, Xue Y, Tang H, Ji DB, Han W, Zhang ML, Zhang ZJ (2015) Electrochemical reduction of Tm ions in LiCl-KCl melt at liquid Zn electrodes. Nucl Sci Tech 26(1):106–110Google Scholar
  27. 27.
    Kim EH, Park GI, Cho YZ, Yang HC (2008) A new approach to minimize pyroprocessing waste salts through a series of fission product removal process. Nucl Technol 162(2):208–218CrossRefGoogle Scholar
  28. 28.
    Yan YD, Yang XN, Huang Y, Xue Y, Zhang ML, Han W, Zhang ZJ (2016) Direct electrochemical formation of different phases Al-Y alloys by codeposition in LiCl-KCl melts. Rare Metal Mater Eng 45(2):272–276CrossRefGoogle Scholar
  29. 29.
    Zhou CG, Duan SZ (1995) Electrode process of Y3+ ion on copper electrode and surface alloying. J Rare Earths 13(2):104–108Google Scholar
  30. 30.
    Han W, Zhao Q, Wang J, Li M, Liu WK, Zhang ML, Yang XG, Sun Y (2017) Electrochemical behavior of Y(III) and preparation of Y-Ni intermetallic compounds in molten LiCl-KCl salts. J Rare Earths 35(1):90–97CrossRefGoogle Scholar
  31. 31.
    Sato Y, Hara M (1996) Formation of intermetallic compounds layer composed of Ni3Y and Ni5Y by electrodeposition on Ni using molten NaCl-KCl-YCl3. Mater Trans JIM 37(9):1525–1528CrossRefGoogle Scholar
  32. 32.
    Xie G, Ema K, Ito Y (1993) Electrochemical formation of Ni-Y intermetallic compound layer in molten chloride. J Appl Electrochem 23(7):753–759CrossRefGoogle Scholar
  33. 33.
    Hoshino Y, Plambec JA (1970) Electrochemical studies of yttrium and yttrium-zinc alloys in fused LiCl-KC1 eutectic. Can J Chem 48(4):685–687CrossRefGoogle Scholar
  34. 34.
    Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. Wiley, New YorkGoogle Scholar
  35. 35.
    Zhang JS (2014) Electrochemistry of actinides and fission products in molten salts-data review. J Nucl Mater 447(1–3):271–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Institute of Nuclear Energy and SafetyHarbin Engineering UniversityHarbinChina

Personalised recommendations