Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2587–2596 | Cite as

Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials through facile layered/spinel phase tuning

  • Bozhou Chen
  • Bangchuan Zhao
  • Jiafeng Zhou
  • Jiyue Song
  • Zhitang Fang
  • Jianming Dai
  • Xuebin Zhu
  • Yuping Sun
Original Paper
  • 183 Downloads

Abstract

Series Li1.2Ni0.2Mn0.6O2 (LNMO) cathode materials have been synthesized by an improved one-step solvothermal method. Structural characterization reveals that all samples are composed of layered and spinel phases and the spinel phase content can be easily tuned by Na-doping or reducing lithium in the LNMO materials. The spinel phase content increases from 2.6% for the x = 0.02 Na-doped sample to 9.2% for the deficient lithium sample. Electrochemical performance measurement shows that the electrochemical performance of the series samples is closely related to the spinel phase content. The deficient lithium sample with the largest spinel phase content has the most excellent cyclic and rate performance. The deficient lithium sample displays a high discharge capacity of 118.9 mAh g−1 at 5 C rate and much more stable capacity retention of 89.4% after 50 cycles at 0.1 C rate, whereas the corresponding values are 66.7, 27.4, and 2.7 mAh g−1 at 5 C rate and 69.4, 58.7, and 37.8% at 0.1 C rate for the Na-doped samples with x = 0, 0.01, and 0.02. The excellent cyclic and rate performance of the electrodes with higher spinel phase content originated from more 3D Li-ion diffusion channels in spinel framework and the relatively stable layered structure improved by an appropriate spinel phase integration.

Keywords

Cathode materials Spinel phase Solvothermal method Na-doping Li-ion diffusion channels 

Notes

Funding information

This work is supported by the Nation Key Research and Development program under Contract No. 2017YFA0402800 and the National Nature Science Foundation of China under Contract Nos. U1732160 and 11504380.

Supplementary material

10008_2018_3953_MOESM1_ESM.doc (36.2 mb)
ESM 1 (DOC 37095 kb)

References

  1. 1.
    Chen S, Zheng Y, Lu Y, Su Y, Bao L, Li N, Li Y, Wang J, Chen R, Wu F (2017) Enhanced electrochemical performance of layered Lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands. ACS Appl Mater Inter 9(10):8669–8678CrossRefGoogle Scholar
  2. 2.
    Liu Y, Liu S, Wang Y, Chen L, Chen X (2013) Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode. J Power Sources 222:455–460CrossRefGoogle Scholar
  3. 3.
    Deng Y-P, Fu F, Wu Z-G, Yin ZW, Zhang T, Li JT, Huang L, Sun SG (2016) Layered/spinel heterostructured Li-rich materials synthesized by a one-step solvothermal strategy with enhanced electrochemical performance for Li-ion batteries. J Mater Chem A 4(1):257–263CrossRefGoogle Scholar
  4. 4.
    Ates MN, Jia Q, Shah A, Busnaina A, Mukerjee S, Abraham KM (2013) Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J Electrochem Soc 161(3):A290–A301CrossRefGoogle Scholar
  5. 5.
    Jin X, Xu Q, Liu X, Yuan X, Liu H (2016) Improvement in rate capability of lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 by Mo substitution. Ionics 22(8):1369–1376CrossRefGoogle Scholar
  6. 6.
    Kou Y, Han E, Zhu L, Liu L, Zhang ZA (2016) The effect of Ti doping on electrochemical properties of Li1.167 Ni0.4Mn0.383Co0.05O2 for lithium-ion batteries. Solid State Ionics 296:154–157CrossRefGoogle Scholar
  7. 7.
    Sallard S, Sheptyakov D, Villevieille C (2017) Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+. J Power Sources 359:27–36CrossRefGoogle Scholar
  8. 8.
    Guo H, Xia Y, Zhao H, Yin C, Jia K, Zhao F, Liu Z (2017) Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides. Ceram Int 43(16):13845–13852CrossRefGoogle Scholar
  9. 9.
    Zhao J, Wang Z, Guo H, Li X, He Z, Li T (2015) Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. Ceram Int 41(9):11396–11401CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Bai P, Tang H, Zhu J, Tang Z (2016) Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a Lithium ion battery cathode material. J Electroanal Chem 782:256–263CrossRefGoogle Scholar
  11. 11.
    Liu Y, Gao Y, Wang Q, Dou A (2013) Influence of coated MnO2 content on the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes. Ionics 20:825–831CrossRefGoogle Scholar
  12. 12.
    Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N (2013) Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol 235:570–576CrossRefGoogle Scholar
  13. 13.
    Kong J-Z, Zhai H-F, Qian X, Wang M, Wang QZ, Li AD, Li H, Zhou F (2017) Improved electrochemical performance of Li1.2 Mn 0.54 Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloy Compd 694:848–856CrossRefGoogle Scholar
  14. 14.
    Han E, Li Y, Zhu L, Zhao L (2014) The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries. Solid State Ionics 255:113–119CrossRefGoogle Scholar
  15. 15.
    Pang S, Wang Y, Chen T, Shen X, Xi X, Liao D (2016) The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram Int 42(4):5397–5402CrossRefGoogle Scholar
  16. 16.
    Huang X, Zhang Q, Chang H, Gan J, Yue H, Yang Y (2009) Hydrothermal synthesis of nanosized LiMnO2–Li2MnO3 compounds and their electrochemical performances. J Electrochem Soc 156(3):A162–A168CrossRefGoogle Scholar
  17. 17.
    Pei Y, Xu C-Y, Xiao Y-C, Chen Q, Huang B, Li B, Li S, Zhen L, Cao G (2017) Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv Funct Mater 27(7):1604349CrossRefGoogle Scholar
  18. 18.
    Lee E-S, Huq A, Manthiram A (2013) Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries. J Power Sources 240:193–203CrossRefGoogle Scholar
  19. 19.
    Xu M, Fei L, Lu W, Chen Z, Li T, Liu Y, Gao G, Lai Y, Zhang Z, Wang P, Huang H (2017) Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application. Nano Energy 35:271–280CrossRefGoogle Scholar
  20. 20.
    Zhang J, Guo X, Yao S, Qiu X (2016) High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries. China Chem 59(11):1479–1485CrossRefGoogle Scholar
  21. 21.
    Liu Y, Gao Y, Dou A (2014) Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery. J Power Sources 248:679–684CrossRefGoogle Scholar
  22. 22.
    Zhang L, Wu B, Li N, Mu D, Zhang C, Wu F (2013) Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. J Power Sources 240:644–652CrossRefGoogle Scholar
  23. 23.
    Wang D, Yu R, Wang X, Ge L, Yang X (2015) Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries. Sci Rep 5(1):8403CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fu F, Huang Y, Wu P, Bu Y, Wang Y, Yao J (2015) Controlled synthesis of lithium-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 oxide with tunable morphology and structure as cathode material for lithium-ion batteries by solvo/hydrothermal methods. J Alloy Compd 618:673–678CrossRefGoogle Scholar
  25. 25.
    Zeng J, Cui Y, Qu D, Zhang Q, Wu J, Zhu X, Li Z, Zhang X (2016) Facile synthesis of platelike hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with exposed {010} planes for high-rate and long cycling-stable lithium ion batteries. ACS Appl Mater Interfaces 8(39):26082–26090CrossRefPubMedGoogle Scholar
  26. 26.
    Kim S, Ma X, Ong SP, Ceder G (2012) A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys Chem Chem Phys 14(44):15571–15578CrossRefPubMedGoogle Scholar
  27. 27.
    Wang J-f, Chen D, Wu W, Wang L, Liang G-c (2017) Effects of Na+ doping on crystalline structure and electrochemical performances of LiNi0.5Mn1.5O4 cathode material. Trans Nonferrous Metal Soc Chin 27(10):2239–2248CrossRefGoogle Scholar
  28. 28.
    Qing R-P, Shi J-L, Xiao D-D, Zhang XD, Yin YX, Zhai YB, Gu L, Guo YG (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6(6):1501914CrossRefGoogle Scholar
  29. 29.
    Liu Y, Zhang Z, Gao Y, Yang G, Li C, Zheng J, Dou A, Wang Q, Su M (2016) Mitigating the voltage decay and improving electrochemical properties of layered-spinel Li1.1Ni0.25Mn0.75O2.3 cathode material by Cr doping. J Alloys Compd 657:37–43CrossRefGoogle Scholar
  30. 30.
    Feng X, Yang Z, Tang D, Kong Q, Gu L, Wang Z, Chen L (2015) Performance improvement of Li-rich layer-structured Li1.2Mn0.54Ni0.13Co0.13O2 by integration with spinel LiNi0.5Mn1.5O4. Phys Chem Chem Phys 17(2):1257–1264CrossRefPubMedGoogle Scholar
  31. 31.
    Zheng Z, Wu Z-G, Zhong Y-J, Shen CH, Hua WB, Xu BB, Yu C, Zhong BH, Guo XD (2015) A further electrochemical investigation on solutions to high energetical power sources: isomerous compound 0.75Li1.2Ni0.2Mn0.6O2·0.25LiNi0.5Mn1.5O4. RSC Adv 5(47):37330–37339CrossRefGoogle Scholar
  32. 32.
    Hong J, Seo D-H, Kim S-W, Gwon H, Oh S-T, Kang K (2010) Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J Mater Chem 20(45):10179–10186CrossRefGoogle Scholar
  33. 33.
    Wei X, Zhang S, Du Z, Yang P, Wang J, Ren Y (2013) Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method. Electrochim Acta 107:549–554CrossRefGoogle Scholar
  34. 34.
    Zhang Q, Mei J, Xie X, Wang X, Zhang J (2015) Solution combustion synthesis and enhanced electrochemical performance Li1.2Ni0.2Mn0.6O2 nanoparticles by controlling NO3−/CH3COO ratio of the precursors. Mater Res Bull 70:397–402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bozhou Chen
    • 1
    • 2
  • Bangchuan Zhao
    • 1
  • Jiafeng Zhou
    • 1
    • 2
  • Jiyue Song
    • 1
    • 2
  • Zhitang Fang
    • 1
  • Jianming Dai
    • 1
  • Xuebin Zhu
    • 1
  • Yuping Sun
    • 1
    • 3
  1. 1.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.University of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.High Magnetic Field LaboratoryChinese Academy of SciencesHefeiPeople’s Republic of China

Personalised recommendations