Nanofibers of V2O5/C@MWCNTs as the cathode material for lithium-ion batteries

Original Paper
  • 66 Downloads

Abstract

Vanadium pentoxide (V2O5) nanofibers (NFs) with a thin carbon layer of 3–5 nm, which wrapped on V2O5 nanoparticles, and integrated multiwalled carbon nanotubes (MWCNTs) have been fabricated via simple electrospinning followed by carbonization process and post-sintering treatment. The obtained composite displays a NF structure with V2O5 nanoparticles connected to each other, and good electrochemical performance: delivering initial capacity of 320 mAh g−1 (between 2.0 and 4.0 V vs. Li/Li+), good cycling stability (223 mAh g−1 after 50 cycles), and good rate performance (~ 150 mAh g−1 at 2 A g−1). This can attribute to the carbon wrapped on the V2O5 nanoparticles which can not only enhance the electric conductivity to decrease the impendence of the cathode materials but also maintain the structural stability to protect the nanostructure from the corruption of electrolyte and the strain stress due to the Li-ion intercalation/deintercalation during the charge/discharge process. And, the added MWCNTs play the role of framework of the unique V2O5 coated by carbon layer and composited with MWCNT NFs (V2O5/C@MWCNT NFs) to ensure the material is more stable.

Keywords

Vanadium pentoxide Electrospinning Nanofibers Lithium-ion batteries 

References

  1. 1.
    Dou Y, Liang X, Gao G, Wu G (2018) Template-free synthesis of porous V 2 O 5 yolk-shell microspheres as cathode materials for lithium ion batteries. J Alloys Compd 735:109–116CrossRefGoogle Scholar
  2. 2.
    Yue Y, Liang H (2017) Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries. Adv Energy Mater 7(17):1602545CrossRefGoogle Scholar
  3. 3.
    Wang J, Cui C, Gao G, Zhou X, Wu J, Yang H, Li Q, Wu G (2015) A new method to prepare vanadium oxide nano-urchins as a cathode for lithium ion batteries. RSC Adv 5(59):47522–47528CrossRefGoogle Scholar
  4. 4.
    Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) Cathode materials for lithium ion batteries prepared by sol-gel methods. J Solid State Electrochem 8(7):450–466CrossRefGoogle Scholar
  5. 5.
    Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou SX, Guo ZP, Cho J (2017) Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv Energy Mater 7(1):1601507CrossRefGoogle Scholar
  6. 6.
    Duan L, Zhang X, Yue K, Wu Y, Zhuang J, Lü W (2017) Synthesis and electrochemical property of LiMn2O4 porous hollow nanofiber as cathode for lithium-ion batteries. Nanoscale Res Lett 12(1):109CrossRefGoogle Scholar
  7. 7.
    Tron A, Jo YN, Oh SH, Park YD, Mun J (2017) Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS Appl Mater Interfaces 9(14):12391–12399CrossRefGoogle Scholar
  8. 8.
    Xiong X, Wang Z, Yan G, Guo H, Li X (2014) Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. J Power Sources 245:183–193CrossRefGoogle Scholar
  9. 9.
    Zhang C, Park S-H, O’Brien SE, Seral-Ascaso A, Liang M, Hanlon D, Krishnan D, Crossley A, McEvoy N, Coleman JN, Nicolosi V (2017) Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: high capacity and rate handling Li-ion battery cathodes. Nano Energy 39:151–161CrossRefGoogle Scholar
  10. 10.
    Wang W, Wang H, Liu S, Huang J (2012) Synthesis of γ-LiV2O5 nanorods as a high-performance cathode for Li ion battery. J Solid State Electrochem 16(7):2555–2561CrossRefGoogle Scholar
  11. 11.
    Kim K-H, Roh D-K, Song IK, Lee B-C, Baeck S-H (2010) Enhanced performance as a lithium-ion battery cathode of electrodeposited V2O5 thin films by e-beam irradiation. J Solid State Electrochem 14(10):1801–1805CrossRefGoogle Scholar
  12. 12.
    Zhang C, Chen Z, Guo Z, Lou XW (2013) Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ Sci 6(3):974–978CrossRefGoogle Scholar
  13. 13.
    Wu C, Feng F, Xie Y (2013) Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 42(12):5157–5183CrossRefGoogle Scholar
  14. 14.
    Mai L, Tian X, Xu X, Chang L, Xu L (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114(23):11828–11862CrossRefGoogle Scholar
  15. 15.
    Wang HG, Ma DL, Huang Y, Zhang XB (2012) Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Chem Eur J 18(29):8987–8993CrossRefGoogle Scholar
  16. 16.
    Liang S, Hu Y, Nie Z, Huang H, Chen T, Pan A, Cao G (2015) Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy 13:58–66CrossRefGoogle Scholar
  17. 17.
    Cheng J, Gu G, Guan Q, Razal JM, Wang Z, Li X, Wang B (2016) Synthesis of a porous sheet-like V2O5-CNT nanocomposite using an ice-templating ‘bricks-and-mortar’ assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries. J Mater Chem 4(7):2729–2737CrossRefGoogle Scholar
  18. 18.
    Zeng Y, Gao G, Wu G, Yang H (2015) Nanosheet-structured vanadium pentoxide thin film as a carbon- and binder-free cathode for lithium-ion battery applications. J Solid State Electrochem 19(11):3319–3328CrossRefGoogle Scholar
  19. 19.
    Pan A, Wu HB, Yu L, Lou XW (2013) Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew Chem 125(8):2282–2286CrossRefGoogle Scholar
  20. 20.
    Wu HB, Pan A, Hng HH, Lou XW (2013) Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv Funct Mater 23(45):5669–5674CrossRefGoogle Scholar
  21. 21.
    Ma Y, Huang A, Zhou H, Ji S, Zhang S, Li R, Yao H, Cao X, Jin P (2017) Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries. J Mater Chem 5(14):6522–6531CrossRefGoogle Scholar
  22. 22.
    Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10(11):4750–4755CrossRefGoogle Scholar
  23. 23.
    Cheah YL, Gupta N, Pramana SS, Aravindan V, Wee G, Srinivasan M (2011) Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J Power Sources 196(15):6465–6472CrossRefGoogle Scholar
  24. 24.
    Xiang J, Yu X-Y, Paik U (2016) General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries. J Power Sources 329:190–196CrossRefGoogle Scholar
  25. 25.
    Sun W, Du A, Feng Y, Shen J, Huang S, Tang J, Zhou B (2016) Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10(10):9123–9128CrossRefGoogle Scholar
  26. 26.
    Wu Y, Gao G, Wu G (2015) Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life. J Mater Chem 3(5):1828–1832CrossRefGoogle Scholar
  27. 27.
    Xiong X, Yang C, Wang G, Lin Y, Ou X, Wang J-H, Zhao B, Liu M, Lin Z, Huang K (2017) SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ Sci 10(8):1757–1763CrossRefGoogle Scholar
  28. 28.
    Xiong X, Wang G, Lin Y, Wang Y, Ou X, Zheng F, Yang C, Wang J-H, Liu M (2016) Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12):10953–10959CrossRefGoogle Scholar
  29. 29.
    Qin M, Liu J, Liang S, Zhang Q, Li X, Liu Y, Lin M (2014) Facile synthesis of multiwalled carbon nanotube–V2O5 nanocomposites as cathode materials for Li-ion batteries. J Solid State Electrochem 18(10):2841–2846CrossRefGoogle Scholar
  30. 30.
    Ming J, Wu Y, Yu Y, Zhao F (2011) Steaming multiwalled carbon nanotubes via acid vapour for controllable nanoengineering and the fabrication of carbon nanoflutes. Chem Commun (Camb) 47(18):5223–5225CrossRefGoogle Scholar
  31. 31.
    An G-H, Lee D-Y, Ahn H-J (2017) Vanadium nitride encapsulated carbon fibre networks with furrowed porous surfaces for ultrafast asymmetric supercapacitors with robust cycle life. J Mater Chem A 5(37):19714–19720CrossRefGoogle Scholar
  32. 32.
    Li W, Li M, Wang M, Zeng L, Yu Y (2015) Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13:693–701CrossRefGoogle Scholar
  33. 33.
    An Q, Zhang P, Xiong F, Wei Q, Sheng J, Wang Q, Mai L (2015) Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res 8(2):481–490CrossRefGoogle Scholar
  34. 34.
    Zhou X, Wu G, Wu J, Yang H, Wang J, Gao G, Cai R, Yan Q (2013) Multiwalled carbon nanotubes–V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries. J Mater Chem 1(48):15459–15468CrossRefGoogle Scholar
  35. 35.
    Liu Y, Guan D, Gao G, Liang X, Sun W, Zhang K, Bi W, Wu G (2017) Enhanced electrochemical performance of electrospun V2O5 nanotubes as cathodes for lithium ion batteries. J Alloys Compd 726:922–929CrossRefGoogle Scholar
  36. 36.
    Wei Q, Jiang Z, Tan S, Li Q, Huang L, Yan M, Zhou L, An Q, Mai L (2015) Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl Mater Interfaces 7(33):18211–18217CrossRefGoogle Scholar
  37. 37.
    Song H, Liu C, Zhang C, Cao G (2016) Self-doped V 4+ –V 2 O 5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy 22:1–10CrossRefGoogle Scholar
  38. 38.
    Song Y, Liu TY, Yao B, Kou TY, Feng DY, Liu XX, Li Y (2017) Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13(16):1700067CrossRefGoogle Scholar
  39. 39.
    Chae OB, Kim J, Park I, Jeong H, Ku JH, Ryu JH, Kang K, Oh SM (2014) Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem Mater 26(20):5874–5881CrossRefGoogle Scholar
  40. 40.
    Ng SH, Chew SY, Wang J, Wexler D, Tournayre Y, Konstantinov K, Liu HK (2007) Synthesis and electrochemical properties of V2O5 nanostructures prepared via a precipitation process for lithium-ion battery cathodes. J Power Sources 174(2):1032–1035CrossRefGoogle Scholar
  41. 41.
    Benxia L, Yang X, Guoxin R, Meng J, Yi X (2006) Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17(10):2560CrossRefGoogle Scholar
  42. 42.
    Zhu D, Liu H, Lv L, Yao YD, Yang WZ (2008) Hollow microspheres of V2O5 and Cu-doped V2O5 as cathode materials for lithium-ion batteries. Scr Mater 59(6):642–645CrossRefGoogle Scholar
  43. 43.
    Liu J, Zhou Y, Wang J, Pan Y, Xue D (2011) Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. Chem Commun 47(37):10380–10382CrossRefGoogle Scholar
  44. 44.
    Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K (2012) V2O5 hollow nanospheres: a lithium intercalation host with good rate capability and capacity retention. J Electrochem Soc 159(5):A618–A621CrossRefGoogle Scholar
  45. 45.
    Pan A, Zhang J-G, Nie Z, Cao G, Arey BW, Li G, Liang S-Q, Liu J (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20(41):9193–9199CrossRefGoogle Scholar
  46. 46.
    Zhang SS, Xu K, Jow TR (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49(7):1057–1061CrossRefGoogle Scholar
  47. 47.
    Wang J, Gao G, Zhou X, Wu J, Yang H, Li Q, Wu G (2014) A facile method to prepare bi-phase lithium vanadate as cathode materials for Li-ion batteries. J Solid State Electrochem 18(9):2459–2467CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations