Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2375–2384 | Cite as

Optical, electrical, and electrochemical behavior of p-type nanostructured SnO2:Ni (NTO) thin films

  • S. Ebrahimi-Koodehi
  • F. E. Ghodsi
  • J. Mazloom
Original Paper
  • 48 Downloads

Abstract

The physical and electrochemical properties of sol-gel synthesized nickel-doped tin oxide (NTO) thin films were investigated. The X-ray diffraction results showed that NTO samples exhibited a tetragonal structure. The average crystallite size and the unit cell volume of the films were reduced by Ni increment, while the stacking fault probability was increased. Furthermore, the field-emission scanning electron microscopy images clearly displayed that the worm-like surface morphology of the SnO2 thin films was altered to the spherical feature in 3 and 10 mol% NTO samples. Moreover, by virtue of Ni incorporation, the average transparency of the SnO2 thin films rose up from 67 to 85% in the visible region; also, the optical band gap of the SnO2 sample (3.97 eV) increased and the thin film with 3 mol% dopant concentration showed a maximum value of 4.22 eV. The blue/green emission intensities of photoluminescence spectra of SnO2 thin film changed via Ni doping. The Hall effect measurements revealed that by Ni addition, the electrical conductivity of tin oxide thin films altered from n- to p-type and the carrier concentration of the films decreased due to the role of Ni2+ ions which act as electron acceptors in NTO films. In contrast, 20 mol% Ni-doped sample had the highest mobility about 9.65 cm2 (V s)−1. In addition, the cyclic voltammogram of NTO thin films in KOH electrolyte indicated the charge storage capacity and the surface total charge density of SnO2 thin films enhanced via Ni doping. Moreover, the diffusion constant of the samples increased from 2 × 10−15 to 6.5 × 10−15 cm2 s−1 for undoped and 5 mol% dopant concentration. The electrochemical impedance spectroscopy of the NTO thin films in two different potentials showed the different electrochemical behaviors of n- and p-type thin films. It revealed that the 20 mol% NTO thin film had maximum charge transfer at lower applied potential.

Keywords

NTO thin films p-Type conductivity Cyclic voltammetry Electrochemical impedance spectroscopy Photoluminescence 

Notes

Acknowledgements

The partial support of this work by the Research Council of the University of Guilan is gratefully acknowledged.

References

  1. 1.
    Jiang Z, Zhao R, Sun B, Nie G, Ji H, Wang C (2016) Ceram Int 42(14):15881–15888CrossRefGoogle Scholar
  2. 2.
    Shalan AE, Rasly M, Osama I, Rashad MM, Ibrahim IA (2014) Ceram Int 40(8):11619–11626CrossRefGoogle Scholar
  3. 3.
    Seo YJ, Kim GW, Sung CH, Anwar MS, Lee CG, Koo BH (2011) Curr Appl Phys 11(3):S310–S313CrossRefGoogle Scholar
  4. 4.
    Lavanya N, Radhakrishnan S, Sekar C (2012) Biosens Bioelectron 36(1):41–47CrossRefGoogle Scholar
  5. 5.
    Ahmed SF, Khan S, Ghosh PK, Mitra MK, Chattopadhyay KK (2006) J Sol-Gel Sci Technol 39(3):241–247CrossRefGoogle Scholar
  6. 6.
    Tsay CY, Liang SC (2015) J Alloys Compd 622:644–450CrossRefGoogle Scholar
  7. 7.
    Ji Z, Zhao L, He Z, Zhou Q, Chen C (2006) Mater Lett 60(11):1387–1389CrossRefGoogle Scholar
  8. 8.
    Guipeng S, Jinliang Y, Peijiang N, Delan M (2016) J Semicond 37:023005–023006CrossRefGoogle Scholar
  9. 9.
    Bagheri-Mohagheghi MM, Shokooh-Saremi M (2004) Semicond Sci Technol 19(6):764–769CrossRefGoogle Scholar
  10. 10.
    Mazloom J, Ghodsi FE (2013) Mater Res Bull 48(4):1468–1476CrossRefGoogle Scholar
  11. 11.
    Ghodsi FE, Mazloom J (2012) Appl Phys A Mater Sci Process 108(3):693–700CrossRefGoogle Scholar
  12. 12.
    Bagheri-Mohagheghi MM, Shahtahmasebi N, Alinejad MR, Youssefi A, Shokooh-Saremi M (2009) Solid State Sci 11(1):233–239CrossRefGoogle Scholar
  13. 13.
    Lee PM, Wu YJ, Hsieh CY, Liao CH, Liu YS, Liu CY (2015) Appl Surf Sci 337:33–37CrossRefGoogle Scholar
  14. 14.
    Shewale PS, Sim KU, Kim YB, Kim JH, Moholkar AV, Uplane MD (2013) J Lumin 139:113–118CrossRefGoogle Scholar
  15. 15.
    Yadav AA (2016) J Mater Sci Mater Electron 27:1866–1872CrossRefGoogle Scholar
  16. 16.
    Yadav AA (2016) J Mater Sci Mater Electron 27:6985–6991CrossRefGoogle Scholar
  17. 17.
    Wan N, Zhao T, Sun S, Wu Q, Bai Y (2014) Electrochim Acta 143:257–264CrossRefGoogle Scholar
  18. 18.
    Ye X, Zhang W, Liu Q, Wang S, Yang Y, Wei H (2015) New J Chem 39(1):130–135CrossRefGoogle Scholar
  19. 19.
    Raj DV, Ponpandian N, Mangalaraj D, Viswanathan C (2014) Mater Sci Semicond Process 26:55–61CrossRefGoogle Scholar
  20. 20.
    Avila-Vazquez V, Galvan-Valencia M, Ledesma-Garcia J, Arriaga LG, Collins-Martinez VH, Guzman-Martinez C, Escalante-Garcia IL, Duron-Torres SM (2015) J Appl Electrochem 45(11):1175–1185CrossRefGoogle Scholar
  21. 21.
    Lu YC, Ma C, Alvarado J, Kidera T, Dimov N, Meng YS, Okada S (2015) J Power Sources 284:287–295CrossRefGoogle Scholar
  22. 22.
    Senoo Y, Kakinuma K, Uchida M, Uchida H, Deki S, Watanabe M (2014) RSC Adv 4(61):32180–32188CrossRefGoogle Scholar
  23. 23.
    Srinivas K, Rao SM, Reddy PV (2011) Nano 3:642–653Google Scholar
  24. 24.
    Cullity BD, Cullity SR, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, New JerseyGoogle Scholar
  25. 25.
    Pascariu P, Airinei A, Grigoras M, Fifere N, Sacarescu L, Lupu N, Stoleriu L (2016) J Alloys Compd 668:65–72CrossRefGoogle Scholar
  26. 26.
    Ahmed AS, Muhamed SM, Singla ML, Tabassum S, Naqvi AH, Azam A (2011) J Lumin 131(1):1–6CrossRefGoogle Scholar
  27. 27.
    Mahalingam T, John VS, Hsu LS (2007) J New Mater Electrochem Syst 10:9–14Google Scholar
  28. 28.
    Singh D, Kundu VS, Maan AS (2016) J Mol Struct 1115:250–257CrossRefGoogle Scholar
  29. 29.
    Van TT, Truc Ly N, Giang LT, My Dung CT (2016) J Nanomater 2016:1–5CrossRefGoogle Scholar
  30. 30.
    Morales FL, Zayas T, Contreras OE, Salgado L (2013) Front Mater Sci 7(4):387–395CrossRefGoogle Scholar
  31. 31.
    Nilavazhagan S, Muthukumaran S, Ashokkumar M (2015) J Mater Sci Mater Electron 26:3989–3996CrossRefGoogle Scholar
  32. 32.
    Thirumoorthi M, Prakash JT (2016) Superlattice Microst 89:378–389CrossRefGoogle Scholar
  33. 33.
    Singh R, Kumar M, Shankar S, Singh R, Ghosh AK, Thakur OP, Das B (2015) Mater Sci Semicond Process 31:310–314CrossRefGoogle Scholar
  34. 34.
    Gandhi TI, Babu RR, Ramamurthi K, Arivanandhan M (2016) J Mater Sci Mater Electron 27:1662–1669CrossRefGoogle Scholar
  35. 35.
    Tauc JC (1972) Optical properties of solids. North-Holland, AmsterdamGoogle Scholar
  36. 36.
    Ginley DS, Hosono H, Paine DC (eds) (2011) Handbook of transparent conductors. Springer, USGoogle Scholar
  37. 37.
    Swanepoel R (1983) J Phys E: SciInstrum 16(12):1214–1222CrossRefGoogle Scholar
  38. 38.
    Turgut G, Sönmez E (2014) Superlattice Microst 69:175–186CrossRefGoogle Scholar
  39. 39.
    Brus L (1986) J Phys Chem 90(12):2555–2560CrossRefGoogle Scholar
  40. 40.
    Mazloom J, Ghodsi FE, Zamani H, Golmojdeh H (2017) J Mater Sci Mater Electron 28:2183–2192CrossRefGoogle Scholar
  41. 41.
    Tauc J (1974) Amorphous and liquid semiconductor. Plenum, New YorkCrossRefGoogle Scholar
  42. 42.
    Hassanien AS, Akl AA (2016) Superlattice Microst 89:153–169CrossRefGoogle Scholar
  43. 43.
    Ventura SD, Birgin EG, Martínez JM, Chambouleyron I (2005) J Appl Phys 97(4):043512–043512CrossRefGoogle Scholar
  44. 44.
    DiDomenico M, Wemple SH (1969) J Appl Phys 40(2):720–734CrossRefGoogle Scholar
  45. 45.
    Sabri NS, Deni MS, Zakaria A, Talari MK (2012) Phys Procedia 25:233–239CrossRefGoogle Scholar
  46. 46.
    Singhal A, Sanyal B, Tyagi AK (2011) RSC Adv 1(5):903–910CrossRefGoogle Scholar
  47. 47.
    Mazloom J, Ghodsi FE, Gholami M (2013) J Alloys Compd 579:384–393CrossRefGoogle Scholar
  48. 48.
    Babar AR, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2011) J Semicond 32(5):053001–053008CrossRefGoogle Scholar
  49. 49.
    Vázquez-Arreguín R, Aguilar-Frutis M, Falcony-Guajardo C, Castañeda-Galván A, Mariscal-Becerra L, Gallardo-Hernández S, Alarcón-Flores G, García-Rocha M (2016) ECS J Solid State Sci Technol 5(3):Q101–Q107CrossRefGoogle Scholar
  50. 50.
    Jayalakshmi M, Mohan Rao M, Scholz F (2003) Langmuir 19(20):8403–8408CrossRefGoogle Scholar
  51. 51.
    Kalu EE, Nwoga TT, Srinivasan V, Weidner JW (2001) J Power Sources 92(1-2):163–167CrossRefGoogle Scholar
  52. 52.
    Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) J Power Sources 196(4):2393–2397CrossRefGoogle Scholar
  53. 53.
    Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) J Power Sources 195(24):7904–7929CrossRefGoogle Scholar
  54. 54.
    Patil PS, Kawar RK, Sadale SB, Inamdar AI, Mahajan SS (2006) Sol Energy Mater Sol Cells 90(11):1629–1639CrossRefGoogle Scholar
  55. 55.
    Nian YR, Teng H (2003) J Electroanal Chem 540:119–127CrossRefGoogle Scholar
  56. 56.
    Chemla M, Dufrêche JF, Darolles I, Rouelle F, Devilliers D, Petitdidier S, Levy D (2005) Electrochim Acta 51(4):665–676CrossRefGoogle Scholar
  57. 57.
    Lee PY, Chang SP, Chang SJ (2015) J Environ Chem Eng 3(1):297–303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Ebrahimi-Koodehi
    • 1
  • F. E. Ghodsi
    • 1
  • J. Mazloom
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations