Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2367–2374 | Cite as

In-situ construction of NiCo2O4 nanoarrays on La0.8Sr0.2MnO3-δ electrodes for intermediate temperature solid oxide fuel cells

  • Wentao Qi
  • Haoshan Wei
  • Yong Zhang
  • Jiaqin Liu
  • Qi Zhou
  • Wenfang Wang
  • Jiewu Cui
  • Yan Wang
  • Chuansheng Chen
  • Yucheng Wu
Original Paper
  • 101 Downloads

Abstract

Novel NiCo2O4 nanoarrays have been in-situ grown on a La0.8Sr0.2MnO3-δ(LSM) cathode through a hydrothermal method, which presents the enhanced electrochemical performances of the LSM cathode for the intermediate temperature solid oxide fuel cells. XRD and SEM have been used to characterize phase structure and morphology of NiCo2O4 nanoarrays. The LSM cathode, modified by the NiCo2O4 nanoarrays, exhibits excellent electrochemical performances compared with the bare LSM cathode. The maximum peak power density of single cell, based on the NiCo2O4 nanoarrays modified the LSM cathode, reaches 957 mW cm−2 at 800 °C, which is almost two times higher than that for the cell based on the bare LSM cathode.

Keywords

La0.8Sr0.2MnO3-δ NiCo2O4 nanoarrays In-situ construction Solid oxide fuel cells 

Notes

Funding information

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51372063, 51402078, and 51772072), the 111 Project (B18018), the Fundamental Research Funds for the Central Universities (Nos. JZ2015HGCH0150 and JZ2016HGTB0719), the Young Scholar Enhancement Foundation (Plan B) of HFUT, China (JZ2016HGTB0711), Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (Grant No. KJ2016SD31).

References

  1. 1.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352CrossRefPubMedGoogle Scholar
  2. 2.
    Dokiya M (2002) SOFC system and technology. Solid State Ionics 152-153:383–392CrossRefGoogle Scholar
  3. 3.
    Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sust Energ Rev 13(9):2430–2440CrossRefGoogle Scholar
  4. 4.
    Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev 6(5):433–455CrossRefGoogle Scholar
  5. 5.
    Moon H, Kim SD, Hyun SH, Kim HS (2008) Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int J Hydrog Energy 33(6):1758–1768CrossRefGoogle Scholar
  6. 6.
    Choudhury A, Chandra H, Arora A (2013) Application of solid oxide fuel cell technology for power generation—a review. Renew Sust Energ Rev 20:430–442CrossRefGoogle Scholar
  7. 7.
    Setevich CF, Mogni LV, Caneiro A, Prado FD (2012) Optimum cathode configuration for IT-SOFC using La0.4Ba0.6CoO3−δ and Ce0.9Gd0.1O1.95. Int J Hydrog Energy 37(19):14895–14901CrossRefGoogle Scholar
  8. 8.
    Serra JM, Vert VB, Buchler O, Meulenberg WA, Buchkremer HP (2008) IT-SOFC supported on mixed oxygen ionic-electronic conducting composites. Chem Mater 20(12):3867–3875CrossRefGoogle Scholar
  9. 9.
    Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45(15-16):2423–2435CrossRefGoogle Scholar
  10. 10.
    Adler SB (2004) Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 104(10):4791–4844CrossRefPubMedGoogle Scholar
  11. 11.
    Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12(9):1039–1050CrossRefGoogle Scholar
  12. 12.
    Wei B, Lv Z, Huang XQ, Liu ML, Li N, Su WH (2008) Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite oxide for IT-SOFC cathode. J Power Sources 176(1):1–8CrossRefGoogle Scholar
  13. 13.
    Pavone M, Ritzmann AD, Carter EA (2011) Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ Sci 4(12):4933–4937CrossRefGoogle Scholar
  14. 14.
    Tsai T, Barnett SA (1997) Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 93(3-4):207–217CrossRefGoogle Scholar
  15. 15.
    Rembelski D, Viricelle JP, Combemale L, Rieu M (2012) Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12(2):256–264CrossRefGoogle Scholar
  16. 16.
    Haanappel VAC, Mai A (2006) Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes. J Solid State Ionics 117:2033–2037CrossRefGoogle Scholar
  17. 17.
    Yang J, Muroyama H, Matsui T, Eguchi K (2010) A comparative study on polarization behavior of (La,Sr)MnO3 and (La,Sr)CoO3 cathodes for solid oxide fuel cells. Int J Hydrog Energy 35(19):10505–10512CrossRefGoogle Scholar
  18. 18.
    Liu ZB, Zhang XM, Huang ZD, Zhao Z, Cui DA, Cheng MJ (2016) Co-synthesized (La0.8Sr0.2)0.9MnO3-Y0.15Zr0.85O2 composite for solid oxide fuel cell cathode. Int J Hydrog Energy 41(46):21385–21393CrossRefGoogle Scholar
  19. 19.
    Su Q, Yoon D, Sisman Z, Khatkhatay F, Jia QX, Manthiram A, Wang HY (2013) Vertically aligned nanocomposite La0.8Sr0.2MnO3−δ/Zr0.92Y0.08O1.96 thin films as electrode/electrolyte interfacial layer for solid oxide reversible fuel cells. Int J Hydrog Energy 38(36):16320–16327CrossRefGoogle Scholar
  20. 20.
    Zhang XM, Liu L, Zhao Z, Tu BF, Qu DR, Cui DA, Wei XM, Chen XB, Cheng MJ (2015) Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode. Nano Lett 15(3):1703–1709CrossRefPubMedGoogle Scholar
  21. 21.
    Park J, Zou J, Chung J (2010) Synthesis and evaluation of nano-size lanthanum strontium manganite–yttria-stablized zirconia composite powders as cathodes for solid oxide fuel cells. J Power Sources 95:4593–4599CrossRefGoogle Scholar
  22. 22.
    Chen KF, Lv Z, Ai N, Chen XJ, Hu JY, Huang XQ, Su WH (2007) Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs. J Power Sources 167(1):84–89CrossRefGoogle Scholar
  23. 23.
    Sholklapper TZ, Radmilovic V, Jacobson CP, Visco SJ, De Jonghe LC (2008) Nanocomposite Ag-LSM solid oxide fuel cell electrodes. J Power Sources 175(1):206–210CrossRefGoogle Scholar
  24. 24.
    Yun JW, Yoon SP, Park SY, Han JH, Nam SW, Lim TH, Kim JS (2009) Modifying the cathodes of intermediate-temperature solid oxide fuel cells with a Ce0.8Sm0.2O2 sol–gel coating. Int J Hydrog Energy 34(22):9213–9219CrossRefGoogle Scholar
  25. 25.
    Neburchilov V, Wang H, Martin J, Qu W (2010) A review on air cathodes for zinc–air fuel cells. J Power Sources 195(5):1271–1291CrossRefGoogle Scholar
  26. 26.
    De Koninck M, Marsan B (2008) MnxCu1-xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim Acta 53(23):7012–7021CrossRefGoogle Scholar
  27. 27.
    Zhu H, Zheng S, Huang Y, Wu L, Sun S (2013) Monodisperse MxFe3xO4 (M= Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 13(6):2947–2951CrossRefPubMedGoogle Scholar
  28. 28.
    Cui B, Lin H, Li J, Li X, Yang J, Tao J (2008) Core–ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv Funct Mater 18(9):1440–1447CrossRefGoogle Scholar
  29. 29.
    Chen D, Huang C, Ran R, Park HJ, Kwak C, Shao ZP (2011) New Ba0.5Sr0.5Co0.8Fe0.2O3−δ+Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity. Electrochem Commun 13(2):197–199CrossRefGoogle Scholar
  30. 30.
    Li SS, Yan RQ, Wu GJ, Xie K, Cheng JG (2013) Composite oxygen electrode LSM-BCZYZ impregnated with Co3O4 nanoparticles for steam electrolysis in a proton-conducting solid oxide electrolyzer. Int J Hydrog Energy 38(35):14943–14951CrossRefGoogle Scholar
  31. 31.
    Ni CS, Vohs JM, Gorte RJ, Irvine JTS (2014) Fabrication and characterisation of a large-area solid oxide fuel cell based on dual tape cast YSZ electrode skeleton supported YSZ electrolytes with vanadate and ferrite perovskite-impregnated anodes and cathodes. J Mater Chem A 2(45):19150–19155CrossRefGoogle Scholar
  32. 32.
    Huang Y, Vohs JM, Gorte RJ (2006) SOFC cathodes prepared by infiltration with various LSM precursors. Electrochem Solid-State Lett 9(5):A237–A240CrossRefGoogle Scholar
  33. 33.
    Li YG, Zhang C, Xu TH, Lu ZY, Wu XC, Wan PB, Sun XM, Jiang L (2015) Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv Funct Mater 25(11):1737–1744CrossRefGoogle Scholar
  34. 34.
    Yang Q, Li T, Lu ZY, Sun XM, Liu JF (2014) Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nano 6:11789–11794Google Scholar
  35. 35.
    Yang JL, Wang JJ, Tang YJ (2013) In situ self-catalyzed formation of core–shell LiFePO4@CNT nanowires for high rate performance lithium-ion batteries. J Mater Chem 1(25):7306–7311CrossRefGoogle Scholar
  36. 36.
    Wang JJ, Yang JL, Tang YL (2013) Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating. J Mater Chem 1(5):1579–1586CrossRefGoogle Scholar
  37. 37.
    Wang JJ, Yang JL, Tang YL (2014) Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nat Commun 5:3415–3422CrossRefPubMedGoogle Scholar
  38. 38.
    Sun JQ, Li YP, Liu XJ, Yang Q, Liu JF, Sun XM, Evans DG, Duan X (2012) Hierarchical cobalt iron oxide nanoarrays as structured catalysts. Chem Commun 48(28):3379–3381CrossRefGoogle Scholar
  39. 39.
    Xu WW, Lu ZY, Lei XD, Li YP, Sun XM (2014) A hierarchical Ni–Co–O@Ni–Co–S nanoarray as an advanced oxygen evolution reaction electrode. Phys Chem Chem Phys 16(38):20402–20405CrossRefPubMedGoogle Scholar
  40. 40.
    Chueh WC, Hao Y, Jung WC, Haile SM (2012) High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nat Mater 11:155–161CrossRefGoogle Scholar
  41. 41.
    Liang YY, Wang HL, Zhou JW, Li YJ, Wang J, Regier T, Dai HJ (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523CrossRefPubMedGoogle Scholar
  42. 42.
    Liu JP, Li YY, Huang XT, Li GY, Li XK (2008) Layered double hydroxide nano-and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Adv Funct Mater 18(9):1448–1458CrossRefGoogle Scholar
  43. 43.
    Yang CH, Adam C, Chen FL (2010) High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance. Int J Hydrog Energy 35(8):3221–3226CrossRefGoogle Scholar
  44. 44.
    Huang YY, Vohs JM, Gorte RJ (2005) Characterization of LSM-YSZ composites prepared by impregnation methods. J Electrochem Soc 152(7):A1347–A1353CrossRefGoogle Scholar
  45. 45.
    Qi WT, Xie K, Liu M, Wu GJ, Wang Y, Zhang Y, Wu YC (2014) Single-phase nickel-doped ceria cathode with in situ grown nickel nanocatalyst for direct high-temperature carbon dioxide electrolysis. RSC Adv 4(76):40494–40504CrossRefGoogle Scholar
  46. 46.
    Qi WT, Ruan C, Wu GJ, Zhang Y, Wang Y, Xie K, Wu YC (2014) Reversibly in-situ anchoring copper nanocatalyst in perovskite titanate cathode for direct high-temperature steam electrolysis. Int J Hydrog Energy 39(11):5485–5496CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wentao Qi
    • 1
  • Haoshan Wei
    • 1
  • Yong Zhang
    • 1
    • 2
  • Jiaqin Liu
    • 2
  • Qi Zhou
    • 2
  • Wenfang Wang
    • 1
    • 2
  • Jiewu Cui
    • 1
    • 2
  • Yan Wang
    • 1
    • 2
  • Chuansheng Chen
    • 3
  • Yucheng Wu
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.Key Laboratory of Advanced Functional Materials and Devices of Anhui ProvinceHefeiChina
  3. 3.Institute of Industry & Equipment TechnologyHefei University of TechnologyHefeiChina

Personalised recommendations