Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2315–2320 | Cite as

All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure

  • A. Belous
  • G. Kolbasov
  • L. Kovalenko
  • E. Boldyrev
  • S. Kobylianska
  • B. Liniova
Original Paper
  • 312 Downloads

Abstract

The Li0.33Lia0.56TiO3 and Li1.3Ti1.7Al0.3(PO4)3 ceramics with the structures of defect-perovskite and NASICON structures with conductivity of 1–6 × 10−6 S/cm at the room temperature are obtained. Ceramic electrolytes were developed for a solid-state battery EMF of 4.1 V and high discharge stability in time. Discharge characteristics of solid-state batteries are studied in a laboratory cell.

Keywords

Li conducting materials Perovskite structure NASICON structure Solid-state battery 

References

  1. 1.
    Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38(9):2565–2575CrossRefGoogle Scholar
  2. 2.
    Besenhard J.O. (Ed.) (1999) Handbook of battery materials, Weinheirn; New York; Chichester; Brisbane; Singapore; TorontoGoogle Scholar
  3. 3.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  4. 4.
    Park CR (ed) (2010) Lithium-ion batteries. InTechGoogle Scholar
  5. 5.
    Belous AG (1996) Synthesis and electrophysical properties of novel lithium ion conducting oxides. Solid State Ionics 90(1-4):193–196CrossRefGoogle Scholar
  6. 6.
    Kobylianska SD, V’yunov OI, Belous AG, Bohnke O (2013) Lithium ion conductors with perovskite structure. Solid State Phenom 200:279–285CrossRefGoogle Scholar
  7. 7.
    Aono H, Sugimoto E, Sadaoka Y et al (1993) The electrical properties of ceramic electrolytes for Li1+xMxTi2-x(PO4)3 + yLi2O, M = Ge, Sn, Hf and Zr systems. J Electrochem Soc 140(7):1827–1833CrossRefGoogle Scholar
  8. 8.
    Arbi K, Mandal S, Rojo JM, Sanz J (2002) Dependence of ionic conductivity of composition of fast ionic conductors Li1+xTi2−xAlx(PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study. Chem Mater 14(3):1091–1097CrossRefGoogle Scholar
  9. 9.
    Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727CrossRefGoogle Scholar
  10. 10.
    Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 43(1-3):103–110CrossRefGoogle Scholar
  11. 11.
    Belous AG, V'yunov OI, Kovalenko LL, Bohnke O, Bohnke C (2014) Synthesis of thin-film electrodes based on LiPON and LiPON-LLTO-LiPON. Russian J Electrochem 50:584–591CrossRefGoogle Scholar
  12. 12.
    V’yunov OI, Gavrilenko ON, Kovalenko LL, Chernukhin SA, Vasilechko LO, Kobilyanskaya SD, Belous AG (2011) Intercalation processes influence the structure and electrophysical properties of lithium-conducting compounds having defect perovskite structure. Russian J Inorganic Chem 56(1):93–89CrossRefGoogle Scholar
  13. 13.
    Patent of Ukraine No. 73434: H01M 6/18 (2005). A chemical current source with a solid electrolyte. Inventors: Belous A.G., Boldyrev E.I., Ivanova N.D.; owner name: V. I. Vernadsky Institute of General and Inorganic Chemistry NAS of UkraineGoogle Scholar
  14. 14.
    Patent No. US 9,266,780 B2: C04B35/447, H01M10/0562, H01M10/05, C03C3/21, H01M10/0525, B32B18/00, C03C10/00, H01M4/58, C03C3/062, H01M10/058 (2010). All solid state battery with densification additive. Inventor: Ogasa K.; owner name: OHARA INC., JAPANGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V.I.Vernadskii Institute of General and Inorganic ChemistryNational Academy of Sciences of UkraineKiev 142Ukraine

Personalised recommendations