A new genosensor for meningococcal meningitis diagnosis using biological samples

  • Ana Cristina Honorato de Castro
  • Leandro Toshio Kochi
  • Anna Clara Rios Moço
  • Roney S. Coimbra
  • Guilherme C. Oliveira
  • Sara Cuadros-Orellana
  • João Marcos Madurro
  • Ana Graci Brito-Madurro
Original Paper
  • 39 Downloads

Abstract

In this work, a new electrochemical biosensor for DNA detection of bacterial meningitis is proposed. The system is based on specific DNA fragments from the Neisseria meningitidis genome as a probe incorporated on graphite electrodes modified with poly(4-aminophenol). Detection of a complementary oligonucleotide sequence, a specific 710-base pair amplicon, and the genomic DNA of bacteria was carried out by differential pulse voltammetry, using ethidium bromide as an electroactive indicator of hybridization. The complementary oligonucleotide and the genomic DNA of Neisseria meningitidis were quantified by the genosensor, showing detection limits of 0.6 ng μL−1 and about 6 ng μL−1, respectively. Morphological differences were observed between hybridized and unhybridized surfaces by atomic force microscopy. The biosensor showed high selectivity, discriminating non-specific targets, and high stability retaining over 98% of its original activity after 120 days of storage. The bioelectrode was effective in discriminating the genomic DNA in samples with human serum without significant interference, proving to be an interesting platform for meningococcal meningitis diagnosis.

Keywords

Biosensor Meningitidis Modified electrode Poly(4-aminophenol) 

Notes

Acknowledgements

The authors are grateful for the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

  1. 1.
    Batista RS, Gomes AP, Gazineo JLD, Miguel PSB, Santana LA, Oliveira L, Gelle M (2017) Meningococcal disease, a clinical and epidemiological review. Asian Pac J Trop Med 10(11):1019–1029CrossRefGoogle Scholar
  2. 2.
    Serruto D, Bottomley MJ, Ram S, Giuliani MM, Rappuoli R (2012) The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 30:87–97CrossRefGoogle Scholar
  3. 3.
    Pace D, Pollard AJ (2012) Meningococcal disease: clinical presentation and sequelae. Vaccine 30:B3–B9CrossRefGoogle Scholar
  4. 4.
    Tak M, Gupta V, Tomar M (2014) Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Biosens Bioelectron 59:200–207CrossRefGoogle Scholar
  5. 5.
    Patel MK, Solanki PR, Kumar A, Khare S, Gupta S, Malhotra BD (2010) Electrochemical DNA sensor for Neisseria meningitidis detection. Biosens Bioelectron 25(12):2586–2591CrossRefGoogle Scholar
  6. 6.
    Caesar NM, Myers KA, Fan X (2013) Neisseria meningitidis serogroup B vaccine development. Microb Pathog 57:33–40CrossRefGoogle Scholar
  7. 7.
    Almeida-González L, Franco-Paredes C, Pérez LF, Santos-Preciado JI (2004) Meningococcal disease caused by Neisseria meningitidis: epidemiological, clinical, and preventive perspectives. Salud Pública Mex 46(5):438–450CrossRefGoogle Scholar
  8. 8.
    Afonso AS, Goulart IMB, Machado AEH, Madurro JM, Brito-Madurro AG (2010) A promising bioelectrode based on gene of mycobacterium leprae immobilized onto poly(4-aminophenol). J Appl Pol Sci 118(5):2921–2928CrossRefGoogle Scholar
  9. 9.
    Cavallaro KF, Sandhu HS, Hyde TB, Johnson BW, Fischer M, Mayer LW, Clark TA, Pallansch MA, Yin Z, Zuo S, Hadler S, Diorditsa S, Hasan ASMM, Bose AS, Dietz V, the AMES Study Group (2015) Expansion of syndromic vaccine preventable disease surveillance to include bacterial meningitis and Japanese encephalitis: evaluation of adapting polio and measles. Vaccine 33(9):1168–1175CrossRefGoogle Scholar
  10. 10.
    Modi S, Anand AK (2013) Phenotypic characterization and antibiogram of CSF isolates in acute bacterial meningitis. J Clin Diagn Res 7(12):2704–2708Google Scholar
  11. 11.
    Richardson DC, Louie L, Louie M, Simor AE (2003) Evaluation of a rapid PCR assay for diagnosis of meningococcal meningitis. J Clin Microbiol 41(8):3851–3853CrossRefGoogle Scholar
  12. 12.
    Diawara I, Katfy K, Zerouali K, Belabbes H, Elmdaghri N (2016) A duplex real-time PCR for the detection of Streptococcus pneumoniae and Neisseria meningitidis in cerebrospinal fluid. J Infect Dev Ctries 10(1):53–61CrossRefGoogle Scholar
  13. 13.
    Drakopoulou Z, Kesanopoulos K, Sioumala M, Tambaki A, Kremastinou J, Tzanakaki G (2008) Simultaneous single-tube PCR-based assay for the direct identification of the five most common meningococcal serogroups from clinical samples. FEMS Immunol Med Microbiol 53(2):178–182CrossRefGoogle Scholar
  14. 14.
    Alves-Balvedi RP, Caetano LP, Madurro JM, Brito-Madurro AG (2016) Use of 3,3′,5,5′ tetramethylbenzidine as new electrochemical indicator of DNA hybridization and its application in genossensor. Biosens Bioelectron 85:226–231CrossRefGoogle Scholar
  15. 15.
    Huang H, Bai W, Dong C, Guo R, Liu Z (2015) An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papilloma virus DNA detection. Biosens Bioelectron 68:442–446CrossRefGoogle Scholar
  16. 16.
    Zhang B, Salieb-Beugelaar GB, Nigo MM, Weidmann M, Hunziker P (2015) Diagnosing dengue virus infection—rapid tests and the role of micro/nanotechnologies. Nanomedicine 11(7):1745–1761CrossRefGoogle Scholar
  17. 17.
    Cheng MS, Lau SH, Chan KP, Toh CS, Chow VT (2015) Impedimetric cell-based biosensor for real-time monitoring of cyto-pathic effects induced by dengue viruses. Biosens Bioelectron 70:74–80CrossRefGoogle Scholar
  18. 18.
    Castro ACH, Franca EG, Paula LF, Soares MCN, Goulart LR, Madurro JM, Brito-Madurro AG (2014) Preparation of genosensor for detection of specific DNA sequence of the hepatitis B vírus. Appl Sur Sci 314:273–279CrossRefGoogle Scholar
  19. 19.
    Vieira SN, Ferreira LF, Franco DL, Afonso AS, Goncalves RA, Brito-Madurro AG, Madurro J (2006) Electrochemical modification of graphite electrodes with poly(4-aminophenol). Macromol Symp 245-246(1):236–242CrossRefGoogle Scholar
  20. 20.
    Watkins TI, Woolfe G (1952) Effect of changing the quaternizing group on the trypanocidal activity of dimidium bromide. Nature 169(4299):506–507CrossRefGoogle Scholar
  21. 21.
    Zhang C, Liu L, Wang J, Rong F, Fu D (2013) Electrochemical degradation of ethidium bromide using boron-doped diamond electrode. Sep Purif Technol 107:91–101CrossRefGoogle Scholar
  22. 22.
    Balvedi RPA, Castro ACH, Madurro JM, Brito-Madurro AG (2014) Detection of a specific biomarker for Epstein-Barr virus using a polymer-based genosensor. Int J Mol Sci 15(12):9051–9066CrossRefGoogle Scholar
  23. 23.
    Waring MJ (1974) Stabilization of two-stranded ribohomopolymer helices and destabilization of a three-stranded helix by ethidium bromide. J Mol Biol 1143:483–486Google Scholar
  24. 24.
    Paraíso LF, Paula LF, Franco DL, Madurro JM, Brito-Madurro AG (2014) Bioelectrochemical detection of alanine aminotransferase for molecular diagnostic of the liver disease. Int J Electrochem Sci 9:1286–1297Google Scholar
  25. 25.
    Wang Q, Ding Y, Gao F, Jiang S, Zhang B, Ni J, Gao F (2013) A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization. Anal Chim Acta 788:158–164CrossRefGoogle Scholar
  26. 26.
    Chiorcea Paquim A-M, Diculescu VC, Oretskaya TS, Oliveira Brett AM (2004) AFM and electroanalytical studies of synthetic oligonucleotide hybridization. Biosens Bioelectron 20(5):933–944CrossRefGoogle Scholar
  27. 27.
    Franco DL, Afonso AS, Ferreira LF, Goncalves RA, Boodts JFC, Brito-Madurro AG, Madurro JM (2008) Electrodes modified with polyaminophenols: immobilization of purines and pyrimidines. Pol Eng Sci 48(10):2043–2050CrossRefGoogle Scholar
  28. 28.
    Wu NY, Gao W, He XI, Chang Z, Xu MT (2013) Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry. Biosens Bioelectron 39(1):210–214CrossRefGoogle Scholar
  29. 29.
    Shi A, Wang J, Han X, Fang X, Zhang Y (2014) A sensitive electrochemical DNA biosensor based on goldnanomaterial and graphene amplified signal. Sensors Actuators B Chem 200:206–221CrossRefGoogle Scholar
  30. 30.
    Patel MK, Solanki PR, Seth S, Gupta S, Khare S, Kumar A, Malhotra B (2009) CtrA gene based electrochemical DNA sensor for detection of meningitis. Electrochem Commun 11(5):969–973CrossRefGoogle Scholar
  31. 31.
    Dash FSK, Sharma M, Khare S, Kumar A (2013) Omp85 genosensor for detection of human brain bacterial meningitis. Biotechnol Lett 35(6):929–935CrossRefGoogle Scholar
  32. 32.
    Dash FSK, Sharma M, Khare S, Kumar A (2013) rmpM genosensor for detection of human brain bacterial meningitis in cerebrospinal. Appl Biochem Biotechnol 171(1):198–208CrossRefGoogle Scholar
  33. 33.
    Dash FSK, Sharma M, Khare S, Kumar A (2014) Carbon composite-based DNA sensor for detection of bacterial meningitis caused by Neisseria meningitidis. J Solid State Electrochem 18(10):2647–2659CrossRefGoogle Scholar
  34. 34.
    Tak M, Gupta V, Tomar MJ (2017) An electrochemical DNA biosensor based on Ni doped ZnO thin film for meningitis detection. Electroanal Chem 792(2017):8–14CrossRefGoogle Scholar
  35. 35.
    Yuann J-MP, Tseng W-H, Lin H-Y, Hou M-H (2012) The effects of loop size on Sac7d-hairpin DNA interactions. Biochim Biophys Acta 1824(9):1009–1015CrossRefGoogle Scholar
  36. 36.
    Amiri AR, Macgregor RB Jr (2011) The effect of hydrostatic pressure on the thermal stability of DNA hairpins. Biophys Chem 156(1):88–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ana Cristina Honorato de Castro
    • 1
  • Leandro Toshio Kochi
    • 1
  • Anna Clara Rios Moço
    • 1
  • Roney S. Coimbra
    • 2
  • Guilherme C. Oliveira
    • 3
  • Sara Cuadros-Orellana
    • 4
  • João Marcos Madurro
    • 5
  • Ana Graci Brito-Madurro
    • 1
  1. 1.Institute of BiotechnologyFederal University of UberlândiaUberlândiaBrazil
  2. 2.Center for Excellence in BioinformaticsFIOCRUZ-MinasBelo HorizonteBrazil
  3. 3.Vale Institute of Technology, ITVBelémBrazil
  4. 4.Department of Forestry SciencesUniversidad Católica del MauleTalcaChile
  5. 5.Institute of ChemistryFederal University of UberlândiaUberlândiaBrazil

Personalised recommendations