Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2617–2622 | Cite as

Facile synthesis of porous LiMn2O4 micro-/nano-hollow spheres with extremely excellent cycle stability as cathode of lithium-ion batteries

  • Haowen Liu
  • Yining Zhou
  • Wenchuan Song
Short Communication
  • 139 Downloads

Abstract

In present work, the porous LiMn2O4 micro-/nano-hollow spheres are directly prepared from the globe precursor MnCO3 obtained via a facile precipitation route without any intermediate and ethanol. X-ray diffraction and scanning electron microscopy results indicate that the as-synthesized porous LiMn2O4 micro-/nano-hollow spheres are composed of nanometer-sized primary particles. Charge–discharge tests, cyclic voltammetry, and electrochemical impedance spectra show that the obtained LiMn2O4 delivered higher reversible capacity, extremely excellent cycle stability, superior kinetic properties, and rate capacities. Specially, there are nearly no any capacity loss after 200 cycles, and the coulombic efficient is nearly close to 100%, which are attributed the unique porous micro-/nano-hollow structure and a better crystallinity.

Keywords

Lithium-ion batteries LiMn2O4 Micro-/nano-structure Precipitation Lithium storage performances 

References

  1. 1.
    Chen J, Zhao N, Zhao J, Li J, Guo F, Li GD (2018) Facile synthesis of LiMn2O4 microsheets with porous micro-nanostructure as high-rate cathode materials for Li-ion batteries. J Solid State Electrochem 22(2):331–338CrossRefGoogle Scholar
  2. 2.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  3. 3.
    Xie J, Tanaka T, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O (2008) Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering. J Power Sources 180(1):576–581CrossRefGoogle Scholar
  4. 4.
    Hariprasad K, Naresh N, Nageswara RB, Venkateswarlu M, Satyanarayan N (2016) Preparation of LiMn2O4 nanorods and nanoparticles for lithium-ion battery applications, Mater. Today 3: 4040–4045Google Scholar
  5. 5.
    Jiao F, Bao JL, Hill AH, Bruce PG (2008) Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew Chem Int Ed 47(50):9711–9716CrossRefGoogle Scholar
  6. 6.
    Zhang F, Zhang R, Liang G, Feng J, Lu L, Qian Y (2013) Carboxylated carbon nanotube anchored MnCO3 nanocomposites as anode materials for advanced lithium-ion batteries. Mater Lett 111:165–168CrossRefGoogle Scholar
  7. 7.
    Wu Y, Zhang J, Cao C, Khalid S, Zhao Q, Wang R, Butt FK (2017) LiNi0.5Mn1.5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries, Electrochim Acta 230: 293–298Google Scholar
  8. 8.
    Huang S, Wu H, Chen P, Guo Y, Nie B, Chen B, Liu H, Zhang Y (2015) Facile pH-mediated synthesis of morphology tunable MnCO3 and their transformation to truncated octahedral spinel LiMn2O4 cathode materials for superior lithium storage. J Mater Chem A 3(7):3633–3640CrossRefGoogle Scholar
  9. 9.
    Wu Y, Cao C, Zhang J, Wang L, Ma X, Xu X (2016) Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 8(30):19567–19572CrossRefGoogle Scholar
  10. 10.
    Tang Y, Lu Y, Luo G (2017) Synthesis of micro–nano-assembled manganese carbonate via aqueous precipitation assisted by ethanol. Ind Eng Chem Res 56(36):10036–10043CrossRefGoogle Scholar
  11. 11.
    Wang GG, Wang JM, Mao WQ, Zhang JQ, Cao CN (2005) Physical properties and electrochemical performance of LiMn2O4 cathode materials prepared by a precipitation method. J Solid State Electrochem 9(7):524–530CrossRefGoogle Scholar
  12. 12.
    Xia Y, Yoshio M (1996) An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds. J Electrochem Soc 143(3):825–833CrossRefGoogle Scholar
  13. 13.
    Zou Z, Li Z, Zhang H, Wang X, Jiang C (2017) Copolymerization-assisted preparation of porous LiMn2O4 hollow microspheres as high power cathode of lithium-ion batteries. J Mater Sci Technol 33(8):781–787CrossRefGoogle Scholar
  14. 14.
    Qiao Y, Li S, Yu Y, Chen C (2013) Synthesis and electrochemical properties of high performance yolk-structured LiMn2O4 microspheres for lithium ion batteries. J Mater Chem A 1(3):860–867CrossRefGoogle Scholar
  15. 15.
    Kebede MA, Ozoemena KI (2017) Molten salt-directed synthesis method for LiMn2O4 nanorods as a cathode material for a lithium-ion battery with superior cyclability. Mater Res Express 4(2):025030–025037CrossRefGoogle Scholar
  16. 16.
    Liu Y, Bai J, Ma X, Li J, Xiong S (2014) Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J Mater Chem A 2(34):14236–14244CrossRefGoogle Scholar
  17. 17.
    Liu HW, Zhang KL (2004) The synthesis and cycling behavior of LiErxMn2-xO4 for lithium-ion batteries. Mater Lett 58(24):3049–3051CrossRefGoogle Scholar
  18. 18.
    Chen X, Zhang Y, Lin H, Xia P, Ca X, Li X, Li X, Li W (2016) Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J Power Sources 312:137–145CrossRefGoogle Scholar
  19. 19.
    Hwang B-M, Kim S-J, Lee Y-W, Han B, Kim S-B, Kim W-S, Park K-W (2013) Mesoporous spinel LiMn2O4 nanomaterial as a cathode for high-performance lithium ion batteries. Int J Electrochem Sci 8:9449–9458Google Scholar
  20. 20.
    Swiderska-Mocek A, Lewandowski A (2017) Kinetics of Li-ion transfer reaction at LiMn2O4, LiCoO2, and LiFePO4 cathodes. J Solid State Electrochem 21(5):1365–1372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei ProvinceSouth Central University for NationalitiesWuhanPeople’s Republic of China

Personalised recommendations