Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2305–2314 | Cite as

Adsorption process of phenothiazine solution in dimethyl sulfoxide on graphite electrodes

  • Mihaela-Ligia Ungureşan
  • Vlad Mureşan
  • Delia Gligor
  • Codruţa Varodi
Original Paper

Abstract

In this paper, an original solution for the modeling and simulation of the adsorption process of a phenothiazine derivative on graphite electrodes is presented. The adsorption process is considered a distributed parameter one, due to the fact that the adsorbed phenothiazine quantity is a function depending on two independent variables. The structure parameters of the adsorption process, which define the influence of both independent variables, are determined using an experimental identification method. The experimental data are obtained through an experiment which is based on the process step response. In order to simulate the adsorption process, the approximate analytical solution, representing the process model, is determined. The simulation results prove the model generality; it is being simulated in relation to both independent variables.

Keywords

The adsorption process Phenothiazine derivatives Modified graphite electrodes Numerical simulation Distributed parameters 

References

  1. 1.
    Golnaraghi F, Kuo BC (2009) Automatic control systems, 9th edn. Wiley, USAGoogle Scholar
  2. 2.
    Love J (2007) Process automation handbook. Springer, LondonGoogle Scholar
  3. 3.
    Khalil HK (2001) Nonlinear systems, 3rd edn. Pearson, USAGoogle Scholar
  4. 4.
    Coloşi T, Abrudean M, Unguresan M L, Muresan V (2013) Numerical simulation method for distributed parameters processes using the matrix with partial derivatives of the state vector. Springer Int., 343Google Scholar
  5. 5.
    Li HX, Qi C (2011) Spatio-temporal modeling of nonlinear distributed parameter systems: a time/space separation based approach, 1st edn. Springer-Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  6. 6.
    Curtain RF, Morris KA (2009) Transfer functions of distributed parameter systems. Automatica 45(5):1101–1116CrossRefGoogle Scholar
  7. 7.
    Smyshlyaev A, Krstic M (2005) Control design for PDEs with space-dependent diffusivity and time-dependent reactivity. Automatica 41(9):1601–1608CrossRefGoogle Scholar
  8. 8.
    Haykin S (2009) Neural networks and learning machines, third edition. Pearson Int, USAGoogle Scholar
  9. 9.
    Vălean H (1996) Neural Network for System Identification and Modelling. In: Proc. of Automatic Control and Testing Conference (Cluj-Napoca), pp 263–268Google Scholar
  10. 10.
    Borges RV (2011) Learning and representing temporal knowledge in recurrent networks. IEEE Trans Neural Netw 22(12):2409–2421CrossRefPubMedGoogle Scholar
  11. 11.
    Monje CA, Chen YQ, Vinagre BM, Xue D, Feliu V (2010) Fractional-order systems and controls. Springer, LondonCrossRefGoogle Scholar
  12. 12.
    Mureşan V, Abrudean M (2010) Temperature modelling and simulation in the furnace with rotary hearth. In: Proc. of IEEE AQTR–17th ed. (Cluj-Napoca), pp 147–152Google Scholar
  13. 13.
    Abrudean M (1998) Systems theory and automatic control. Mediamira, Cluj-NapocaGoogle Scholar
  14. 14.
    Ogata K (2001) Modern control engineering, 4th edn. Prentice Hall, USAGoogle Scholar
  15. 15.
    Unguresan ML, Maicaneanu A, Dulf FV, Gligor D, Dulf EH (2012) Experimental study and modelling of iron and copper adsorbtion on natural zeolites. J Therm Anal Calorim 110:1293–1297CrossRefGoogle Scholar
  16. 16.
    Zhang J, Xiang Y, Wang M, Basu A, Lu Y (2016) Dose-dependent response of personal glucose meters to nicotinamide coenzymes: applications to point-of-care diagnostics of many non-glucose targets in a single step. Angew Chem Int Ed 55(2):732–736CrossRefGoogle Scholar
  17. 17.
    Ma W, Li DW, Sutherland TC, Li Y, Long YT, Chen HY (2011) Reversible redox of NADH and NAD+ at a hybrid lipid bilayer membrane using ubiquinone. J Am Chem Soc 133(32):12366–12369CrossRefPubMedGoogle Scholar
  18. 18.
    Ma W, Ying YL, Qin LX, Gu Z, Zhou H, Li DW, Sutherland TC, Chen HY, Long YT (2013) Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nature Protocol 8(3):439–450CrossRefGoogle Scholar
  19. 19.
    Ma W, Qin LX, Liu FT, Gu Z, Wang J, Pan ZG, James TD, Long YT (2013) Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing. Sci Rep 3(1):1537–1544CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma W, Long YT (2014) Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro- to nano-scale. Chem Soc Rev 43(1):30–41CrossRefPubMedGoogle Scholar
  21. 21.
    Dicu D, Muresan L, Popescu IC, Cristea C, Silberg IA, Brouant P (2000) Modified electrodes with new phenothiazine derivatives for electrocatalytic oxidation of NADH. Electrochim Acta 45(24):3951–3957CrossRefGoogle Scholar
  22. 22.
    Gligor D, Varodi C, Muresan L (2010) Graphite electrode modified with a new phenothiazine derivative and with carbon nanotubes for NADH electrocatalytic oxidation. Chem Biochem Eng Q 24:159–166Google Scholar
  23. 23.
    Gligor D, Dilgin Y, Popescu IC, Gorton L (2009) Poly-phenothiazine derivative-modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochim Acta 54(11):3124–3128CrossRefGoogle Scholar
  24. 24.
    Gligor DM, Unguresan ML (2010) Numerical modelling and simulation of Laviron treatment for poly-phenothiazine derivative-modified glassy carbon electrodes. J Math Chem 47(4):1476–1482CrossRefGoogle Scholar
  25. 25.
    Doumeche B, Blum LJ (2010) NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt. Electrochem Commun 12(10):1398–1402CrossRefGoogle Scholar
  26. 26.
    Lates V, Gligor D, Muresan LM, Popescu IC (2011) Comparative investigation of NADH electrooxidation at graphite electrodes modified with two new phenothiazine derivatives. J Electroanal Chem 661(1):192–197CrossRefGoogle Scholar
  27. 27.
    Hasebe Y, Wang Y, Fukuoka K (2011) Electropolymerized poly(toluidine blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis. J Environ Sci 23(6):1050–1056CrossRefGoogle Scholar
  28. 28.
    Meredith MT, Giroud F, Minteer SD (2012) Azine/hydrogen/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization. Electrochim Acta 72:207–214CrossRefGoogle Scholar
  29. 29.
    Shanmugam R, Barathi P, Zen JM, Kumar AS (2016) An unusual electrochemical oxidation of phenothiazine dye to phenothiazine-bi-1,4-quinone derivative (a donor-acceptor type molecular hybrid) on MWCNT surface and its cysteine electrocatalytic oxidation function. Electrochim Acta 187:34–45CrossRefGoogle Scholar
  30. 30.
    Carvalho FR, Zampieri EH, Caetano W, Silva R (2017) Unveiling one-dimensional supramolecular structures formed through π–π stacking of phenothiazines by differential pulse voltammetry. ChemPhysChem 18(10):1224–1228CrossRefPubMedGoogle Scholar
  31. 31.
    Cristea C, Cormos G, Gligor D, Filip I, Muresan L, Popescu IC (2009) Electrochemical characterization of bis-(10Hphenothiazin-3-yl)-methane derivatives obtained by microwave assisted organic synthesis. J New Mater Electrochem Syst 12:233–238Google Scholar
  32. 32.
    Horovitz O, Gligor D, Popescu IC (2007) Correlations between electrochemical activity of phenothiazine derivatives modified graphite electrodes and some structural and molecular characteristics. RevRoumChim 52:823–828Google Scholar
  33. 33.
    Unguresan ML, Gligor D, Dulf F, Colosi T (2009) Analogical modelling and numerical simulation of the adsorption process for poly-phenothiazine formaldehyde on graphite electrodes. Int J Chem React Eng 7:1Google Scholar
  34. 34.
    Unguresan ML, Gligor DM (2009) Numerical modelling and simulation of Koutecky-Levich equation for NADH electrocatalytic oxidation at graphite electrodes modified with a new polymeric phenothiazine. Indian J Chem 48A:206–210Google Scholar
  35. 35.
    Unguresan M L, Gligor D, Dulf F (2008) Numerical modelling and simulation of Laviron treatment for some phenothiazine modified graphite electrodes. IEEE-TTTC International Conference on Automation, Quality & Testing, Robotics (Cluj-Napoca) 16, pp 238–241Google Scholar
  36. 36.
    Unguresan ML, Muresan V, Abrudean M, Clitan I, Colosi T (2014) Modeling and simulation of the gas absorption process in the liquid phase. Appl Mech Mater 656:81–94CrossRefGoogle Scholar
  37. 37.
    https://www.mathworks.com/help/index.html (User Guide. Matlab 7.5.0 (R2007b))

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mihaela-Ligia Ungureşan
    • 1
  • Vlad Mureşan
    • 1
  • Delia Gligor
    • 2
  • Codruţa Varodi
    • 3
  1. 1.Technical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Department of Environmental Analysis and EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  3. 3.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations