Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2321–2328 | Cite as

Facile synthesis of single-crystalline Co3O4 cubes as high-performance anode for lithium-ion batteries

  • Kuikui Xiao
  • Lili Zhang
  • Qunli Tang
  • Binbin Fan
  • Aiping Hu
  • Shiying Zhang
  • Weina Deng
  • Xiaohua Chen
Original Paper


Transition metal oxides have great potential as anode for lithium-ion batteries (LIBs), owing to their high theoretical capacity and low cost. However, the poor cycling stability and electron conductivity have limited the widely expected application of transition metal oxides. In this work, highly single-crystalline Co3O4 cubes with 400 nm in the average side length are successfully synthesized by a facile hydrothermal method. When used as anode for LIBs, the Co3O4 single-crystalline cubes exhibit highly stable and substantial discharge capacities of the amount to 877 mA h g−1 at 200 mA g−1 after 110 cycles with remarkable capacity retention of 98%, and 576 mA h g−1 even at a high rate of 2000 mA g−1. The scalability of the preparation method and the impressive results achieved here demonstrate the potential for the application to the future development of transition metal oxides anodes. These results suggest that the single-crystalline Co3O4 is a promising electrode material for the high-performance energy storage devices.


Single-crystalline Co3O4 Hydrothermal method Stability Rate capability 


Funding information

This work was financially supported by the National Natural Science Foundation of China (51572078, 51772086, 51272073 and 51541203) and the Scientific Research Fund of Hunan Province (2015JJ2033).


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefPubMedGoogle Scholar
  2. 2.
    Fujimoto H, Mabuchi A, Natarajan C, Kasuh T (2002) Properties of graphite prepared from boron-doped pitch as an anode for a rechargeable Li ion battery. Carbon 40(4):567–574CrossRefGoogle Scholar
  3. 3.
    Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197CrossRefGoogle Scholar
  4. 4.
    Tanaka U, Sogabe T, Sakagoshi H, Ito M, Tojo T (2001) Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries. Carbon 39(6):931–936CrossRefGoogle Scholar
  5. 5.
    Peng C, Chen B, Qin Y, Yang S, Li C, Zuo Y, Liu S, Yang J (2012) Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 6(2):1074–1081CrossRefPubMedGoogle Scholar
  6. 6.
    Xiao X, Liu X, Zhao H, Chen D, Liu F, Xiang J, Hu Z, Li Y (2012) Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv Mater 24(42):5762–5766CrossRefPubMedGoogle Scholar
  7. 7.
    Huang G, Xu S, Lu S, Li L, Sun H (2014) Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl Mater Inter 6(10):7236–7243CrossRefGoogle Scholar
  8. 8.
    Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Edit 55(20):5990–5993CrossRefGoogle Scholar
  9. 9.
    Wang L, Fu Y, Chen Y, Li Y, Zhou R, Chen S, Song Y (2017) Ultralight flower ball-like Co3O4/melamine-derived carbon foam as anode materials for lithium-ion batteries. J Alloy Compd 724:1117–1123CrossRefGoogle Scholar
  10. 10.
    Yin J, Zhang Y, Lu Q, Wu X, Jiang Z, Dang L, Ma H, Guo Y, Gao F, Yan Q (2017) Tunable Co3O4 hollow structure s (from yolk-shell to multi-shell) and their Li storage properties. J Mater Chem A 5(25):12757–12761CrossRefGoogle Scholar
  11. 11.
    Ren M, Yuan S, Su L, Zhou Z (2012) Chrysanthemum-like Co3O4 architectures: hydrothermal synthesis and lithium storage performances. Solid State Sci 14(4):451–455CrossRefGoogle Scholar
  12. 12.
    Tian D, Zhou X-L, Zhang Y-H, Zhou Z, Bu X-H (2015) MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg Chem 54(17):8159–8161CrossRefPubMedGoogle Scholar
  13. 13.
    Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Func Mater 15(5):851–857CrossRefGoogle Scholar
  14. 14.
    Choi W-S, Hwang S, Chang W, Shin H-C (2016) Degradation of Co3O4 anode in rechargeable lithium-ion battery: a semi-empirical approach to the effect of conducting material content. J Solid State Electr 20(2):345–352CrossRefGoogle Scholar
  15. 15.
    Hu A, Cao W, Liu D, Tang Q, Deng W, Chen X (2018) Saqima-like Co3O4/CNTs secondary microstructures with ultrahigh initial Coulombic efficiency as an anode for lithium ion batteries. J Solid State Electr 22(2):417–427CrossRefGoogle Scholar
  16. 16.
    Su L, Zhong Y, Zhou Z (2013) Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. J Mater Chem 1(47):15158CrossRefGoogle Scholar
  17. 17.
    Lee SH, Yu SH, Lee JE, Jin A, Lee DJ, Lee N, Jo H, Shin K, Ahn TY, Kim YW, Choe H, Sung YE, Hyeon T (2013) Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett 13(9):4249–4256CrossRefPubMedGoogle Scholar
  18. 18.
    Chen J, Xu L, Li W, Gou X (2005) α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater 17(5):582–586CrossRefGoogle Scholar
  19. 19.
    Zheng X, Wang H, Wang C, Deng Z, Chen L, Li Y, Hasan T, Su B-L (2016) 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy 22:269–277CrossRefGoogle Scholar
  20. 20.
    Xu X, Cao K, Wang Y, Jiao L (2016) 3D hierarchical porous ZnO/ZnCo2O4 nanosheets as high-rate anode material for lithium-ion batteries. J Mater Chem A 4(16):6042–6047CrossRefGoogle Scholar
  21. 21.
    Lee CW, Seo S-D, Kim DW, Park S, Jin K, Kim D-W, Hong KS (2013) Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res 6(5):348–355CrossRefGoogle Scholar
  22. 22.
    Zhang X, Yang Z, Li C, Xie A, Shen Y (2017) A novel porous tubular Co3O4: self-assembly and excellent electrochemical performance as anode for lithium-ion batteries. Appl Surf Sci 403:294–301CrossRefGoogle Scholar
  23. 23.
    Jin R, Meng Y, Ma Y, Li H, Sun Y, Chen G (2016) Hierarchical MnCo2O4 constructed by mesoporous nanosheets@polypyrrole composites as anodes for lithium ion batteries. Electrochim Acta 209:163–170CrossRefGoogle Scholar
  24. 24.
    Xu J, He L, Xu W, Tang H, Liu H, Han T, Zhang C, Zhang Y (2014) Facile synthesis of porous NiCo2O4 microflowers as high-performance anode materials for advanced lithium-ion batteries. Electrochim Acta 145:185–192CrossRefGoogle Scholar
  25. 25.
    Zhan L, Chen H, Fang J, Wang S, Ding L-X, Li Z, Ashman PJ, Wang H (2016) Coaxial Co3O4@polypyrrole core-shell nanowire arrays for high performance lithium ion batteries. Electrochim Acta 209:192–200CrossRefGoogle Scholar
  26. 26.
    Hu H, Guan B, Xia B, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137(16):5590–5595CrossRefPubMedGoogle Scholar
  27. 27.
    Wu R, Qian X, Law AW-K, Zhou K (2016) Coordination polymer-derived mesoporous Co3O4 hollow nanospheres for high-performance lithium-ions batteries. RSC Adv 6(56):50846–50850CrossRefGoogle Scholar
  28. 28.
    Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270CrossRefPubMedGoogle Scholar
  29. 29.
    Wang L, Liu B, Ran S, Huang H, Wang X, Liang B, Chen D, Shen G (2012) Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. J Mater Chem 22(44):23541CrossRefGoogle Scholar
  30. 30.
    Zhang J, Lyu Z, Zhang F, Wang L, Xiao P, Yuan K, Lai M, Chen W (2016) Facile synthesis of hierarchical porous Co3O4nanoboxes as efficient cathode catalysts for Li–O2 batteries. J Mater Chem A 4(17):6350–6356CrossRefGoogle Scholar
  31. 31.
    Li B, Feng J, Qian Y, Xiong S (2015) Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J Mater Chem A 3(19):10336–10344CrossRefGoogle Scholar
  32. 32.
    Su D, Xie X, Dou S, Wang G (2014) CuO single crystal with exposed {001} facets—a highly efficient material for gas sensing and Li-ion battery applications. Sci Rep 4:5753CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fujimoto H, Mabuchi A, Tokumitsu K, Chinnasamy N, Kasuh T (2011) 7Li nuclear magnetic resonance studies of hard carbon and graphite/hard carbon hybrid anode for Li ion battery. J Power Sources 196(3):1365–1370CrossRefGoogle Scholar
  34. 34.
    Huang H, Zhu W, Tao X, Xia Y, Yu Z, Fang J, Gan Y, Zhang W (2012) Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl Mater Interfaces 4(11):5974–5980CrossRefPubMedGoogle Scholar
  35. 35.
    Xu K, Yang L, Zou J, Yang Y, Li Q, Qu Y, Ye J, Yuan C (2017) Fabrication of novel flower-like Co3O4 structures assembled by single-crystalline porous nanosheets for enhanced xylene sensing properties. J Alloy Compd 706:116–125CrossRefGoogle Scholar
  36. 36.
    Guo L, Ding Y, Qin C, Li W, Du J, Fu Z, Song W, Wang F (2016) Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochim Acta 187:234–242CrossRefGoogle Scholar
  37. 37.
    Liu Y, Cheng Z, Sun H, Arandiyan H, Li J, Ahmad M (2015) Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J Power Sources 273:878–884CrossRefGoogle Scholar
  38. 38.
    Zhang J, Xie Z, Li W, Dong S, Qu M (2014) High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes. Carbon 74:153–162CrossRefGoogle Scholar
  39. 39.
    Kang C, Lahiri I, Baskaran R, Kim W-G, Sun Y-K, Choi W (2012) 3-dimensional carbon nanotube for Li-ion battery anode. J Power Sources 219:364–370CrossRefGoogle Scholar
  40. 40.
    Chen Y, Hu Y, Shao J, Shen Z, Chen R, Zhang X, He X, Song Y, Xing X (2015) Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. J Power Sources 298:130–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaChina
  2. 2.Hunan Province Key Laboratory of Applied Environmental PhotocatalysisChangsha UniversityChangshaChina

Personalised recommendations