Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2395–2403 | Cite as

Towards high-performance cathode materials for lithium-ion batteries: Al2O3-coated LiNi0.8Co0.15Zn0.05O2

  • Hong Yin
  • Xiang-Xiang Yu
  • Han Zhao
  • Chong LiEmail author
  • Ming-Qiang ZhuEmail author
Original Paper


Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g−1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.


LiNi0.8Co0.15Zn0.05O2 Al2O3 Cathode Lithium-ion batteries Electrochemical impedance spectroscopic 



We thank Analytical and Testing Center of Huazhong University of Science and Technology and the Center of Micro-Fabrication and Characterization (CMFC) of WNLO for use of their facilities.

Funding information

This work was supported by the NSFC (51673077, 21474034, 51603078), National Basic Research Program of China (Grant no. 2015CB755602 and 2013CB922104) and the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS029).

Supplementary material

10008_2018_3904_MOESM1_ESM.doc (2.4 mb)
ESM 1 (DOC 2456 kb)


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. CrossRefPubMedGoogle Scholar
  2. 2.
    Souza DCS, Pralong V, Jacobson AJ, Nazar LF (2002) A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 296(5575):2012–2015. CrossRefPubMedGoogle Scholar
  3. 3.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. CrossRefPubMedGoogle Scholar
  4. 4.
    D Bresser, E Paillard, S Passerini (2015) Advances in batteries for medium and large-scale energy storage. Woodhead Publishing: 213–289Google Scholar
  5. 5.
    Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Modin EB, Podgorbunsky AB, Sushkov YV, Zheleznov VV (2017) Characterization and electrochemical properties of nanostructured Zr-doped Anatase TiO2 tubes synthesized by sol-gel template route. J Mater Sci Technol 33(6):527–534. CrossRefGoogle Scholar
  6. 6.
    Yu XX, Yin H, Li HX, Zhang W, Zhao H, Li C, Zhu MQ (2017) Piezo-phototronic effect modulated self-powered UV/visible/near-infrared photodetectors based on CdS:P3HT microwires. Nano Energy 34:155–163. CrossRefGoogle Scholar
  7. 7.
    Venkatachalapathy R, Lee CW, Lu WQ, Prakash J (2000) Thermal investigations of transitional metal oxide cathodes in Li-ion cells. Electrochem Commun 2(2):104–107. CrossRefGoogle Scholar
  8. 8.
    Wu SH, Yang CW (2005) Preparation of LiNi0.8CO0.2O2-based cathode materials for lithium batteries by a co-precipitation method. J Power Sources 146(1-2):270–274. CrossRefGoogle Scholar
  9. 9.
    Jouybari YH, Asgari S (2011) Synthesis and electrochemical properties of LiNi0.8Co0.2O2 nanopowders for lithium ion battery applications. J Power Sources 196(1):337–342. CrossRefGoogle Scholar
  10. 10.
    Ha HW, Jeong KH, Yun NJ, Hong MZ, Kim K (2005) Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating. Electrochim Acta 50(18):3764–3769. CrossRefGoogle Scholar
  11. 11.
    Tan KS, Reddy MV, Rao GV, Chowdari BVR (2005) Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8CO0.2)O2. J Power Sources 141(1):129–142. CrossRefGoogle Scholar
  12. 12.
    Oh SH, Lee SM, Cho WI, Cho BW (2006) Electrochemical characterization of zirconium-doped LiNi0.8Co0.2O2 cathode materials and investigations on deterioration mechanism. Electrochim Acta 51(18):3637–3644. CrossRefGoogle Scholar
  13. 13.
    Sivaprakash S, Majumder SB, Nieto S, Katiyar RS (2007) Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries. J Power Sources 170(2):433–440. CrossRefGoogle Scholar
  14. 14.
    Song SW, Zhuang GV, Ross PN (2004) Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J Electrochem Soc 151(8):A1162–A1167. CrossRefGoogle Scholar
  15. 15.
    Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid State Ionics 166(3-4):317–325. CrossRefGoogle Scholar
  16. 16.
    Wang C, Ma X, Cheng J, Zhou L, Sun J, Zhou Y (2006) Effects of Ca doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. Solid State Ionics 177(11-12):1027–1031. CrossRefGoogle Scholar
  17. 17.
    Xiang J, Chang C, Zhang F, Sun J (2009) Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J Alloy Compd 475(1-2):483–487. CrossRefGoogle Scholar
  18. 18.
    Lee SW, Kim H, Kim MS, Youn HC, Kang K, Cho BW, Roh KC, Kim KB (2016) Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J Power Sources 315:261–268. CrossRefGoogle Scholar
  19. 19.
    Fey GTK, Chen JG, Subramanian V, Osaka T (2002) Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2. J Power Sources 112(2):384–394. CrossRefGoogle Scholar
  20. 20.
    Zhecheva E, Stoyanova R, Tyuliev G, Tenchev K, Mladenov M, Vassilev S (2003) Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO. Solid State Sci 5(5):711–720. CrossRefGoogle Scholar
  21. 21.
    Zhang ZR, Liu HS, Gong ZL, Yang Y (2004) Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8CO0.2O2 cathode materials. J Power Sources 129(1):101–106. CrossRefGoogle Scholar
  22. 22.
    Suresh P, Shukla AK, Munichandraiah N (2005) Capacity stabilization of layered Li0.9Mn0.9Ni0.1O2 cathode material by employing ZnO coating. Mater Lett 59(8-9):953–958. CrossRefGoogle Scholar
  23. 23.
    Xiang J, Chang C, Yuan L, Sun J (2008) A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem Commun 10(9):1360–1363. CrossRefGoogle Scholar
  24. 24.
    Huang Y, Chen J, Ni J, Zhou H, Zhang X (2009) A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J Power Sources 188:538–545CrossRefGoogle Scholar
  25. 25.
    Huang ZD, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK (2011) Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Mater Chem 21(29):10777–10784. CrossRefGoogle Scholar
  26. 26.
    Yin H, Cao M, Yu X, Zhao H, Shen Y, Li C, Zhu M (2017) Self-standing Bi2O3 nanoparticles carbon/nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater Chem Front 1(8):1615–1621. CrossRefGoogle Scholar
  27. 27.
    Yin H, Yu XX, Li QW, Cao ML, Zhang W, Zhao H, Zhu MQ (2017) Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J Alloy Compd 706:97–102. CrossRefGoogle Scholar
  28. 28.
    Han CJ, Yoon JH, Cho W, Jang H (2004) Electrochemical properties of LiNi0.8Co0.2-xAlxO2 prepared by a sol-gel method. J Power Sources 136(1):132–138. CrossRefGoogle Scholar
  29. 29.
    Gao N, Gu F, Gu D (2006) Influences of preparation and physical characters of LiNi0.78Co0.2Zn0.02O2 on its electrochemical properties. J Harbin Inst Technol 38:1606–1612Google Scholar
  30. 30.
    Yuan R, Qu M, Yu Z (2003) Synthesis and electrochemical performance study of LixNi0.8-yCo0.2ZnyOp. J Inorg Chem 19:423–427Google Scholar
  31. 31.
    Yin H, Li Q, Cao M, Zhang W, Zhao H, Li C, Huo K, Zhu M (2017) Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res 10(6):2156–2167. CrossRefGoogle Scholar
  32. 32.
    Yin H, Cao ML, Yu XX, Li C, Shen Y, Zhu MQ (2017) Hierarchical CuBi2O4 microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Adv 7(22):13250–13256. CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Peng LLB, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14(5):2849–2853. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations