Towards high-performance cathode materials for lithium-ion batteries: Al2O3-coated LiNi0.8Co0.15Zn0.05O2
- 44 Downloads
Abstract
Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g−1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.
Keywords
LiNi0.8Co0.15Zn0.05O2 Al2O3 Cathode Lithium-ion batteries Electrochemical impedance spectroscopicNotes
Acknowledgements
We thank Analytical and Testing Center of Huazhong University of Science and Technology and the Center of Micro-Fabrication and Characterization (CMFC) of WNLO for use of their facilities.
Supplementary material
References
- 1.Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644 CrossRefGoogle Scholar
- 2.Souza DCS, Pralong V, Jacobson AJ, Nazar LF (2002) A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry. Science 296(5575):2012–2015. https://doi.org/10.1126/science.1071079 CrossRefGoogle Scholar
- 3.Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438 CrossRefGoogle Scholar
- 4.D Bresser, E Paillard, S Passerini (2015) Advances in batteries for medium and large-scale energy storage. Woodhead Publishing: 213–289Google Scholar
- 5.Opra DP, Gnedenkov SV, Sinebryukhov SL, Voit EI, Sokolov AA, Modin EB, Podgorbunsky AB, Sushkov YV, Zheleznov VV (2017) Characterization and electrochemical properties of nanostructured Zr-doped Anatase TiO2 tubes synthesized by sol-gel template route. J Mater Sci Technol 33(6):527–534. https://doi.org/10.1016/j.jmst.2016.11.011 CrossRefGoogle Scholar
- 6.Yu XX, Yin H, Li HX, Zhang W, Zhao H, Li C, Zhu MQ (2017) Piezo-phototronic effect modulated self-powered UV/visible/near-infrared photodetectors based on CdS:P3HT microwires. Nano Energy 34:155–163. https://doi.org/10.1016/j.nanoen.2017.02.033 CrossRefGoogle Scholar
- 7.Venkatachalapathy R, Lee CW, Lu WQ, Prakash J (2000) Thermal investigations of transitional metal oxide cathodes in Li-ion cells. Electrochem Commun 2(2):104–107. https://doi.org/10.1016/S1388-2481(99)00151-4 CrossRefGoogle Scholar
- 8.Wu SH, Yang CW (2005) Preparation of LiNi0.8CO0.2O2-based cathode materials for lithium batteries by a co-precipitation method. J Power Sources 146(1-2):270–274. https://doi.org/10.1016/j.jpowsour.2005.03.027 CrossRefGoogle Scholar
- 9.Jouybari YH, Asgari S (2011) Synthesis and electrochemical properties of LiNi0.8Co0.2O2 nanopowders for lithium ion battery applications. J Power Sources 196(1):337–342. https://doi.org/10.1016/j.jpowsour.2010.06.097 CrossRefGoogle Scholar
- 10.Ha HW, Jeong KH, Yun NJ, Hong MZ, Kim K (2005) Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating. Electrochim Acta 50(18):3764–3769. https://doi.org/10.1016/j.electacta.2005.01.022 CrossRefGoogle Scholar
- 11.Tan KS, Reddy MV, Rao GV, Chowdari BVR (2005) Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8CO0.2)O2. J Power Sources 141(1):129–142. https://doi.org/10.1016/j.jpowsour.2004.08.044 CrossRefGoogle Scholar
- 12.Oh SH, Lee SM, Cho WI, Cho BW (2006) Electrochemical characterization of zirconium-doped LiNi0.8Co0.2O2 cathode materials and investigations on deterioration mechanism. Electrochim Acta 51(18):3637–3644. https://doi.org/10.1016/j.electacta.2005.10.023 CrossRefGoogle Scholar
- 13.Sivaprakash S, Majumder SB, Nieto S, Katiyar RS (2007) Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries. J Power Sources 170(2):433–440. https://doi.org/10.1016/j.jpowsour.2007.04.029 CrossRefGoogle Scholar
- 14.Song SW, Zhuang GV, Ross PN (2004) Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J Electrochem Soc 151(8):A1162–A1167. https://doi.org/10.1149/1.1763771 CrossRefGoogle Scholar
- 15.Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid State Ionics 166(3-4):317–325. https://doi.org/10.1016/j.ssi.2003.11.010 CrossRefGoogle Scholar
- 16.Wang C, Ma X, Cheng J, Zhou L, Sun J, Zhou Y (2006) Effects of Ca doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. Solid State Ionics 177(11-12):1027–1031. https://doi.org/10.1016/j.ssi.2006.03.030 CrossRefGoogle Scholar
- 17.Xiang J, Chang C, Zhang F, Sun J (2009) Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J Alloy Compd 475(1-2):483–487. https://doi.org/10.1016/j.jallcom.2008.07.099 CrossRefGoogle Scholar
- 18.Lee SW, Kim H, Kim MS, Youn HC, Kang K, Cho BW, Roh KC, Kim KB (2016) Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J Power Sources 315:261–268. https://doi.org/10.1016/j.jpowsour.2016.03.020 CrossRefGoogle Scholar
- 19.Fey GTK, Chen JG, Subramanian V, Osaka T (2002) Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2. J Power Sources 112(2):384–394. https://doi.org/10.1016/S0378-7753(02)00400-7 CrossRefGoogle Scholar
- 20.Zhecheva E, Stoyanova R, Tyuliev G, Tenchev K, Mladenov M, Vassilev S (2003) Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO. Solid State Sci 5(5):711–720. https://doi.org/10.1016/S1293-2558(03)00096-7 CrossRefGoogle Scholar
- 21.Zhang ZR, Liu HS, Gong ZL, Yang Y (2004) Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8CO0.2O2 cathode materials. J Power Sources 129(1):101–106. https://doi.org/10.1016/j.jpowsour.2003.11.015 CrossRefGoogle Scholar
- 22.Suresh P, Shukla AK, Munichandraiah N (2005) Capacity stabilization of layered Li0.9Mn0.9Ni0.1O2 cathode material by employing ZnO coating. Mater Lett 59(8-9):953–958. https://doi.org/10.1016/j.matlet.2004.10.072 CrossRefGoogle Scholar
- 23.Xiang J, Chang C, Yuan L, Sun J (2008) A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem Commun 10(9):1360–1363. https://doi.org/10.1016/j.elecom.2008.07.012 CrossRefGoogle Scholar
- 24.Huang Y, Chen J, Ni J, Zhou H, Zhang X (2009) A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J Power Sources 188:538–545CrossRefGoogle Scholar
- 25.Huang ZD, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK (2011) Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Mater Chem 21(29):10777–10784. https://doi.org/10.1039/c1jm00059d CrossRefGoogle Scholar
- 26.Yin H, Cao M, Yu X, Zhao H, Shen Y, Li C, Zhu M (2017) Self-standing Bi2O3 nanoparticles carbon/nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater Chem Front 1(8):1615–1621. https://doi.org/10.1039/C7QM00128B CrossRefGoogle Scholar
- 27.Yin H, Yu XX, Li QW, Cao ML, Zhang W, Zhao H, Zhu MQ (2017) Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J Alloy Compd 706:97–102. https://doi.org/10.1016/j.jallcom.2017.02.215 CrossRefGoogle Scholar
- 28.Han CJ, Yoon JH, Cho W, Jang H (2004) Electrochemical properties of LiNi0.8Co0.2-xAlxO2 prepared by a sol-gel method. J Power Sources 136(1):132–138. https://doi.org/10.1016/j.jpowsour.2004.05.006 CrossRefGoogle Scholar
- 29.Gao N, Gu F, Gu D (2006) Influences of preparation and physical characters of LiNi0.78Co0.2Zn0.02O2 on its electrochemical properties. J Harbin Inst Technol 38:1606–1612Google Scholar
- 30.Yuan R, Qu M, Yu Z (2003) Synthesis and electrochemical performance study of LixNi0.8-yCo0.2ZnyOp. J Inorg Chem 19:423–427Google Scholar
- 31.Yin H, Li Q, Cao M, Zhang W, Zhao H, Li C, Huo K, Zhu M (2017) Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res 10(6):2156–2167. https://doi.org/10.1007/s12274-016-1408-z CrossRefGoogle Scholar
- 32.Yin H, Cao ML, Yu XX, Li C, Shen Y, Zhu MQ (2017) Hierarchical CuBi2O4 microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Adv 7(22):13250–13256. https://doi.org/10.1039/C6RA27216A CrossRefGoogle Scholar
- 33.Zhao Y, Peng LLB, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14(5):2849–2853. https://doi.org/10.1021/nl5008568 CrossRefGoogle Scholar