Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1211–1220 | Cite as

A molecularly imprinted electrochemical sensor based on Au nanocross-chitosan composites for detection of paraquat

  • Xueqing Shan
  • Jean de Dieu Habimana
  • Jian Ji
  • Jiadi Sun
  • Fuwei Pi
  • Yinzhi Zhang
  • Xiulan SunEmail author
Original Paper


A novel electrochemical sensor for paraquat (PQ) detection based on molecularly imprinted polymer (MIP) membranes on a glassy carbon electrode (GCE) modified with Au nanocrosses-chitosan (AuNCs-CS) was constructed. P-Aminothiophenol (p-ATP) and 4,4′-bipyridine template were assembled on the surface of the modified GCE by the formation of Au–S bonds and hydrogen-bonding interactions, followed by polymer membrane formation by the electropolymerization in a polymer solution containing p-ATP, HAuCl4, tetrabutylammonium perchlorate (TBAP), and the template molecule 4,4′-bipyridine. The as-constructed molecularly imprinted sensor (MIP-AuNC-CS) was characterized by differential pulse voltammetry (DPV), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This is the first time that molecularly imprinted polymer technology has been integrated with a modified AuNCs-CS to electrochemically detect PQ. The linear response of the MIP-AuNC-CS sensor was in the range from 1 × 10−14 to 1 × 10−10 mol L−1, and the limit of detection was 2.3 × 10−15 mol L−1. This sensor showed high-speed real-time detection capability, low sample consumption, high sensitivity, low interference, and good stability characteristics, and was proven to detect PQ.


Paraquat Au nanocrosses Chitosan Molecularly imprinted polymer Electrochemical sensor Differential pulse voltammetry 


Funding information

This work has been supported by the National Research Program of China (CX173007) and the National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180303).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10008_2018_4192_MOESM1_ESM.docx (786 kb)
ESM 1 (DOCX 786 kb)


  1. 1.
    Djukic MM, Jovanovic MD, Ninkovic M, Stevanovic I, Ilic K, Curcic M, Vekic J (2012) Protective role of glutathione reductase in paraquat induced neurotoxicity. Chem Biol Interact 199(2):74–86CrossRefGoogle Scholar
  2. 2.
    de Almeida RM, Yonamine M (2007) Gas chromatographic–mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples. J Chromatogr B 853(1-2):260–264CrossRefGoogle Scholar
  3. 3.
    Huang C-L, Lee Y-C, Yang Y-C, Kuo T-Y, Huang N-K (2012) Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction. Toxicol Lett 209(3):203–210CrossRefGoogle Scholar
  4. 4.
    Sun IO, Shin SH, Yoon HJ, Lee KY (2016) Predicting the probability of survival in acute paraquat poisoning. Res Clin Pr 35(2):102–106Google Scholar
  5. 5.
    Castaing Y (2015) Réanimation Urgences 4:614Google Scholar
  6. 6.
    Siangproh W, Somboonsuk T, Chailapakul O, Songsrirote K (2017) Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta 174:448–453CrossRefGoogle Scholar
  7. 7.
    Ciui B, Tertis M, Florea A, Hosu O, Peia D, Sandulescu R, Cristea C (2017) Electrochemical sensor for dopamine based on electropolymerized molecularly imprinted poly-aminothiophenol and gold nanoparticles. Procedia Technol 27:118–119CrossRefGoogle Scholar
  8. 8.
    Lavignac N, Allender CJ, Brain KR (2004) Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays. Anal Chim Acta 510(2):139–145CrossRefGoogle Scholar
  9. 9.
    Dickert FL, Hayden O, Halikias KP (2001) Synthetic receptors as sensor coatings for molecules and living cells. Analyst 126(6):766–771CrossRefGoogle Scholar
  10. 10.
    Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X (2017) A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron 98:299–304CrossRefGoogle Scholar
  11. 11.
    Apetrei IM, Apetrei C (2015) Study of different carbonaceous materials as modifiers of screen-printed electrodes for detection of catecholamines. IEEE Sensors J 15(6):3094–3101CrossRefGoogle Scholar
  12. 12.
    Xie C, Liu B, Wang Z, Gao D, Guijian Guan A, Zhang Z (2008) Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem 80(2):437–443CrossRefGoogle Scholar
  13. 13.
    Wang X, Zhu P, Pi F, Jiang H, Shao J, Zhang Y, Sun X (2016) A sensitive and simple macrophage-based electrochemical biosensor for evaluating lipopolysaccharide cytotoxicity of pathogenic bacteria. Biosens Bioelectron 81:349–357CrossRefGoogle Scholar
  14. 14.
    Ma M, Zhu P, Pi F, Ji J, Sun X (2016) A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamine. J Electroanal Chem 775:171–178CrossRefGoogle Scholar
  15. 15.
    Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors--the electrochemical approach. Anal Bioanal Chem 402(5):1827–1846CrossRefGoogle Scholar
  16. 16.
    Hu Y, Zhang Z, Zhang H (2012) Selective and sensitive molecularly imprinted sol–gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au–multi-walled carbon nanotubes–chitosan. J Solid State Electr 16(3):857–867CrossRefGoogle Scholar
  17. 17.
    Kan X, Liu T, Li C (2012) A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection. J Solid State Electr 16(10):3207–3213CrossRefGoogle Scholar
  18. 18.
    Song W, Chen Y, Xu J (2010) Dopamine sensor based on molecularly imprinted electrosynthesized polymers. J Solid State Electr 14(10):1909–1914CrossRefGoogle Scholar
  19. 19.
    Afkhami A, Ghaedi H, Madrakian T, Ahmadi M, Mahmood-Kashani H (2013) Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens Bioelectron 44:34–40CrossRefGoogle Scholar
  20. 20.
    Ji J, Zhou Z, Zhao X, Sun J, Sun X (2015) Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol. Biosens Bioelectron 66:590–595CrossRefGoogle Scholar
  21. 21.
    Wang Z, Li H, Chen J, Xue Z, Wu B, Lu X (2011) Acetylsalicylic acid electrochemical sensor based on PATP-AuNPs modified molecularly imprinted polymer film. Talanta 85(3):1672–1679CrossRefGoogle Scholar
  22. 22.
    Harada T, Matsuishi K, Yu O, Isobe K, Suda A, Kawan H, Mizuno H, Miyawaki A, Midorikawa K, Kannari F (2011) Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores. Opt Express 19(14):13618–13627CrossRefGoogle Scholar
  23. 23.
    Rinaudo M (2007) Chitin and chitosan — properties and applications. ChemInform 38:603–632CrossRefGoogle Scholar
  24. 24.
    Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084CrossRefGoogle Scholar
  25. 25.
    Yun L, Sun J, Wu L, Jian J, Sun X, Qian Y (2014) Surface-enhanced fluorescence immunosensor using Au nano-crosses for the detection of microcystin-LR. Biosens Bioelectron 62:255–260CrossRefGoogle Scholar
  26. 26.
    Riskin M, Tel-Vered R, Bourenko T, Granot E, Willner I (2008) Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on pi-donor-acceptor interactions. J Am Chem Soc 130(30):9726–9733CrossRefGoogle Scholar
  27. 27.
    Huang Z, Chen F, Bennett PA, Tao N (2007) Single molecule junctions formed via Au-thiol contact: stability and breakdown mechanism. J Am Chem Soc 129(43):13225–13231CrossRefGoogle Scholar
  28. 28.
    Yang S, Zheng Y, Zhang X (2016) Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine. J Solid State Electr 20(7):2037–2044CrossRefGoogle Scholar
  29. 29.
    Xin L, Ji Z, Rao H (2017) Electrochemical dipyridamole sensor based on molecularly imprinted polymer on electrode modified with Fe3O4@Au/amine-multi-walled carbon nanotubes. J Solid State Electr 21:3071–3082CrossRefGoogle Scholar
  30. 30.
    Gan T, Zhao A, Wang Z (2017) An electrochemical sensor based on SiO2@TiO2-embedded molecularly imprinted polymers for selective and sensitive determination of theophylline. J Solid State Electr 21:3683–3691CrossRefGoogle Scholar
  31. 31.
    Shamsipur M, Moradi N, Pashabadi A (2018) Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: a highly sensitive impedimetric melamine sensor. J Solid State Electr 22(1):169–180CrossRefGoogle Scholar
  32. 32.
    Garcia LLC, Oliveira GG, Fatibello-Filho O, Banks CE (2013) Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecylhydrogenphosphate (DHP) film. Sensors Actuators B Chem 181:306–311CrossRefGoogle Scholar
  33. 33.
    Tomková H, Sokolová R, Opletal T, Kučerová P, Kučera L, Součková J, Skopalová J, Barták P (2018) Electrochemical sensor based on phospholipid modified glassy carbon electrode - determination of paraquat. J Electroanal Chem 821:33–39CrossRefGoogle Scholar
  34. 34.
    Lopes IC, De SD, Machado SA, Tanaka AA (2007) Voltammetric detection of paraquat pesticide on a phthalocyanine-based pyrolitic graphite electrode. Anal Bioanal Chem 388(8):1907–1914CrossRefGoogle Scholar
  35. 35.
    Li J, Lei W, Xu Y, Zhang Y, Xia M, Wang F (2015) Fabrication of polypyrrole-grafted nitrogen-doped graphene and its application for electrochemical detection of paraquat. Electrochim Acta 174:464–471CrossRefGoogle Scholar
  36. 36.
    Souza DD, Codognoto L, Machado SAS, Avaca LA (2005) Electroanalytical determination of the herbicide paraquat in natural water and commercial tea samples with gold electrodes obtained from recordable compact disc. Anal Lett 38(2):331–341CrossRefGoogle Scholar
  37. 37.
    El Mhanunedi MA, Bakasse M, Chtaini A (2007) Square-wave voltammetric determination of paraquat at carbon paste electrode modified with hydroxyapatite. Electroanal 19:1727–1733CrossRefGoogle Scholar
  38. 38.
    Nasir T, Herzog G, Hébrant M, Despas C, Liu L, Walcarius A (2018) Mesoporous silica thin films for improved electrochemical detection of Pparaquat. Acs Sens 3(2):484–493CrossRefGoogle Scholar
  39. 39.
    Liu H (2017) Electrochemical study of the herbicide paraquat based on a graphene-zinc oxide nanocomposite. Int J Electrochem SC 12:8599–8608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xueqing Shan
    • 1
  • Jean de Dieu Habimana
    • 1
  • Jian Ji
    • 1
  • Jiadi Sun
    • 1
  • Fuwei Pi
    • 1
  • Yinzhi Zhang
    • 1
  • Xiulan Sun
    • 1
    Email author
  1. 1.State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and NutritionJiangnan UniversityWuxiChina

Personalised recommendations