Carbon monoxide oxidation assisted by interfacial oxygen-water layers

  • Carlos F. ZinolaEmail author
Original Paper


Based on the fact that oxygenated species promotes the oxidative desorption of carbon monoxide adsorbates, a simple methodology is described here to prepare platinum electrodes with oxygen/water ensembles. Platinum fast quenching (thermal shocking) in oxygenated water after flame annealing in an oxygen atmosphere offers features not seen before. We propose the formation of interfacial oxygen/water ensembles as partially soluble species between platinum rows at stepped n x (110) surfaces. Depending on the temperature of quenching and time of cooling, it is possible to almost completely oxidize carbon monoxide adsorbates, via two processes, i.e., chemical oxidation by molecular oxygen and Langmuir-Hinshelwood surface oxidation.

Graphical abstract

Top (blue) platinum surface prepared in oxygen flame

Bottom (black) platinum surface prepared in hydrogen flame


Platinum Oxidation Carbon monoxide Water Interfacial oxygen 



The author is a researcher at PEDECIBA United Nations and ANII. The author wishes to thank Mr. Luis Orsi for encouraging the main experiments of this paper.

Supplementary material

10008_2018_4190_MOESM1_ESM.docx (6.4 mb)
ESM 1 (DOCX 6508 kb)


  1. 1.
    Guzman JA (2012) Carbon monoxide poisoning. Crit Care Clin 28(4):537–548CrossRefGoogle Scholar
  2. 2.
    Sleightholme AES, Kucernak A (2011) An anomalous peak observed in the electrochemistry of the platinum/perfluorosulfonic acid membrane interface. Electrochim Acta 56(11):4396–4402CrossRefGoogle Scholar
  3. 3.
    Olu P-Y, Ohnishi T, Mochizuki D, Sugimoto W (2018) Uncovering the real active sites of ruthenium oxide for the carbon monoxide electro-oxidation reaction on platinum: the catalyst acts as a co-catalyst. J Electroanal Chem 810:109–118CrossRefGoogle Scholar
  4. 4.
    lanniello R, Schmidt VM, Stimming U, Stumper J, Wallau A (1994) CO adsorption and oxidation on Pt and Pt-Ru alloys: dependence on substrate composition. Electrochim Acta 39(11-12):1863–1869CrossRefGoogle Scholar
  5. 5.
    Gottesfeld S, Pafford J (1988) A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. J Electrochem Soc 135(10):2651–2652CrossRefGoogle Scholar
  6. 6.
    Schmidt VM, Oetjen H-F, Divisek J (1997) Performance improvement of PEMFC using fuels with CO by addition of oxygen-evolving compounds. J Electrochem Soc 144(9):L237–L238CrossRefGoogle Scholar
  7. 7.
    Kauranen PS, Skou EJ (1996) Mixed methanol oxidation/oxygen reduction currents on a carbon supported Pt catalyst. J Electroanal Chem 408(1-2):189–198CrossRefGoogle Scholar
  8. 8.
    Rodríguez JL, Pastor E, Zinola CF (2006) Heterogeneously assisted oxidation of adsorbates from carbon monoxide, methanol and ethanol by hydrogen peroxide solutions on platinum electrodes in sulphuric acid. J Appl Electrochem 36(11):1271–1279CrossRefGoogle Scholar
  9. 9.
    Clavilier J, Faure R, Guinet G, Durand R (1980) Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J Electroanal Chem 107(1):205–209CrossRefGoogle Scholar
  10. 10.
    Arulmozhi N, Jerkiewicz G (2016) Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis research. Part 1: semi-automated crystal growth. Electrocatalysis 7(6):507–518CrossRefGoogle Scholar
  11. 11.
    Armand D, Clavilier J (1989) Influence of specific adsorption of anions on the electrochemical behaviour of the Pt (100) surface in acid medium: comparison with Pt (111). J Electroanal Chem 270(1-2):331–347CrossRefGoogle Scholar
  12. 12.
    Armand D, Clavilier J (1989) Electrochemical behaviour of the (110) orientation of a platinum surface in acid medium: the role of anions. J Electroanal Chem 263(1):109–126CrossRefGoogle Scholar
  13. 13.
    Al Jaaf-Golze K, Kolb DM, Sherson D (1986) On the voltammetry of curves of Pt (111) in aqueous solutions. J Electroanal Chem 200(1-2):353–362CrossRefGoogle Scholar
  14. 14.
    Feddrix FH, Yeager EB, Cahan BD (1992) Low energy electron diffraction and cyclic voltammetry studies of flame-annealed platinum single crystals. J Electroanal Chem 330(1-2):419–431CrossRefGoogle Scholar
  15. 15.
    Clavilier J, Armand D, Wu BL (1982) Electrochemical study of the initial surface condition of platinum surfaces with (100) and (111) orientations. J Electroanal Chem 135(1):159–166CrossRefGoogle Scholar
  16. 16.
    Kibler LA, Cuesta A, Kleinert M, Kolb DM (2000) In-situ STM characterisation of the surface morphology of platinum single crystal electrodes as a function of their preparation. J Electroanal Chem 484(1):73–82CrossRefGoogle Scholar
  17. 17.
    Uchida Y, Lehmpfuhl G (1991) Estimation of ad-vacancy formation energy on the Pt(111) surface by using reflection electron microscopy. Surf Sci 243(1-3):193–198CrossRefGoogle Scholar
  18. 18.
    Markovic NM, Grgur BN, Lucas CA, Ross PN (1997) Surface electrochemistry of CO on Pt (110)-(1 x 2) and Pt (110)-(1 x 1) surfaces. Surf Sci 384(1-3):L805–L814CrossRefGoogle Scholar
  19. 19.
    Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2000) The effect of the cooling atmosphere in the preparation of flame-annealed Pt(111) electrodes on CO adlayer oxidation. Electrochem Commun 2(7):487–490CrossRefGoogle Scholar
  20. 20.
    Rodríguez P, García G, Herrero E, Feliu JM, Koper MTM (2011) Effect of the surface structure of Pt(100) and Pt(110) on the oxidation of carbon monoxide in alkaline solution: an FTIR and electrochemical study. Electrocatal 2(3):242–253CrossRefGoogle Scholar
  21. 21.
    Farias MJS, Camara GA, Feliu JM (2015) Understanding the CO pre-oxidation and the intrinsic catalytic activity of step sites in stepped Pt surfaces in acidic medium. J Phys Chem C 119(35):20272–20282CrossRefGoogle Scholar
  22. 22.
    Rudnev AV, Wandlowski T (2012) An influence of pretreatment conditions on surface structure and reactivity of Pt(100) towards CO oxidation reaction. Russ J Electrochem 48(3):259–270CrossRefGoogle Scholar
  23. 23.
    Aberdam D, Durand R, Faure R, EI-Omar F (1986) Structural changes of a Pt(111) electrode induced by electrosorption of oxygen in acidic solutions: a coupled voltammetry, LEED and AES study. Surf Sci 171(2):303–330CrossRefGoogle Scholar
  24. 24.
    Clavilier J, Armand D, Sun SG, Petit M (1986) Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. J Electroanal Chem 205(1-2):267–277CrossRefGoogle Scholar
  25. 25.
    Feliu JM, Orts JM, Gómez R, Aldaz A, Clavilier J (1994) New information on the unusual adsorption states of Pt(111) in sulphuric acid solutions from potentiostatic adsorbate replacement by CO. J Electroanal Chem 372(1-2):265–268CrossRefGoogle Scholar
  26. 26.
    Savitsky E, Polyakova V, Gorina N, Roshan N: Physical metallurgy of platinum metals. Pergamon Press Ltd., English ed (1978)Google Scholar
  27. 27.
    Liu R, Gruber J, Bhattacharyya D, Tucker GJ, Antoniou A (2016) Mechanical properties of nanocrystalline nanoporous platinum. Acta Mater 103:624–632CrossRefGoogle Scholar
  28. 28.
    Golosov DA, Okojie JE, Zavadski SМ, Rudenkov АS, Melnikov SN, Kolos VV (2018) Stability of the platinum electrode during high temperature annealing. Thin Solid Films 661:53–59CrossRefGoogle Scholar
  29. 29.
    Mitsushima S, Koizumi Y, Uzuka S, Ota K-I (2008) Dissolution of platinum in acidic media. Electrochim Acta 54(2):455–460CrossRefGoogle Scholar
  30. 30.
    Triaca WE, Arvia AJ (1990) The electrochemical facetting of metal surfaces: preferred crystallographic orientation and roughening effects in electrocatalysis. J Appl Electrochem 20(3):347–356CrossRefGoogle Scholar
  31. 31.
    Caram JA, Gutierrez C (1991) An electrochemical and UV-visible potential-modulated reflectance study of the electrooxidation of carbon monoxide on oxide-free smooth platinum. Part 1. Results in 0.5 M HClO4. J Electroanal Chem 305(2):259–274CrossRefGoogle Scholar
  32. 32.
    Figueiredo MC, Hiltrop D, Sundararaman R, Schwarz KA, Koper MTM (2018) Absence of diffuse double layer effect on the vibrational properties and oxidation of chemisorbed carbon monoxide on a Pt(111) electrode. Electrochim Acta 281:127–132CrossRefGoogle Scholar
  33. 33.
    Attard GA, Brew A (2015) Cyclic voltammetry and oxygen reduction activity of the Pt {110}-(1×1) surface. J Electroanal Chem 747:123–129CrossRefGoogle Scholar
  34. 34.
    Attard GA, Hunter K, Wright E, Sharman J, Martínez-Hincapié R, Feliu JM (2017) The voltammetry of surfaces vicinal to Pt{110}: structural complexity simplified by CO cooling. J Electroanal Chem 793:137–146CrossRefGoogle Scholar
  35. 35.
    Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) Increased oxygen coverage at Pt−Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC−XPS. J Phys Chem C 112(7):2750–2755CrossRefGoogle Scholar
  36. 36.
    Alsabet M, Grden M, Jerkiewicz G (2006) Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential and time conditions. J Electroanal Chem 589(1):120–127CrossRefGoogle Scholar
  37. 37.
    Jerkiewicz G, Alsabet M, Grden M, Varela H, Tremiliosi- Filho G (2009) Erratum to: “Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions” [Journal of Electroanalytical Chemistry (2006) 589: 120–127]. J Electroanal Chem 625(2):172–174CrossRefGoogle Scholar
  38. 38.
    Gu Z, Balbuena PB (2007) Chemical environment effects on the atomic oxygen absorption into Pt(111) subsurfaces. J Phys Chem 111:17388–17396Google Scholar
  39. 39.
    Kongkanand A, Ziegelbauer JM (2012) Surface platinum electrooxidation in the presence of oxygen. J Phys Chem C 116(5):3684–3693CrossRefGoogle Scholar
  40. 40.
    Sasaki K, Shao M, Adzic R: Dissolution and stabilization of platinum in oxygen cathodes in polymer electrolyte fuel cell durability; Büchi FN, Inaba M, Schmidt TJ, Eds; Springer, New York (2009) pp. 7–27Google Scholar
  41. 41.
    Bae JH, Brocenschi RF, Kisslinger K, Xin HL, Mirkin MV (2017) Dissolution of Pt during oxygen reduction reaction produces Pt nanoparticles. Anal Chem 89(23):12618–12621CrossRefGoogle Scholar
  42. 42.
    Kinomoto Y, Watanabe S, Takahashi M, Ito M (1991) Infrared spectra of CO adsorbed on Pt(100), Pt(111), and Pt(110) electrode surfaces. Surf Sci 242(1-3):538–543CrossRefGoogle Scholar
  43. 43.
    Vlieg E, Robinson IK, Kern K (1990) Relaxations in the missing-row structure of the (1×2) reconstructed surfaces of Au(110) and Pt(110). Surf Sci 233(3):248–254CrossRefGoogle Scholar
  44. 44.
    Kondo T, Masuda T, Aoki N, Uosaki K (2016) Potential-dependent structures and potential-induced structure changes at Pt(111) single-crystal electrode/sulfuric and perchloric acids interfaces in the potential region between hydrogen underpotential deposition and surface oxide formation by in situ surface X-ray scattering. J Phys Chem C 120:16118–16131CrossRefGoogle Scholar
  45. 45.
    Björling A, Herrero E, Feliu JM (2011) Electrochemical oxidation of Pt(111) vicinal surfaces: effects of surface structure and specific anion adsorption. J Phys Chem C 115(31):15509–15515CrossRefGoogle Scholar
  46. 46.
    Drnec J, Ruge M, Reikowski F, Rahn B, Carlà F, Felici R, Stettner J, Magnussen OM, Harrington DA (2017) Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim Acta 224:220–227CrossRefGoogle Scholar
  47. 47.
    Gómez R, Gutiérrez FJ, Feliu JM (2004) Carbon monoxide oxidation and nitrous oxide reduction on Rh/Pt(111) electrodes. Electrochim Acta 49(8):1195–1208CrossRefGoogle Scholar
  48. 48.
    Shrestha BR, Tada E, Nishikata A (2014) Effect of chloride on platinum dissolution. Electrochim Acta 143:161–167CrossRefGoogle Scholar
  49. 49.
    Zinola CF (1995) on “UHV electrochemical devices for Pd(111)-I interfaces”, Samjeské G DiplomarbeitGoogle Scholar
  50. 50.
    Pérez G, Pastor E, Zinola CF (2009) A novel Pt/Cr/Ru/C cathode catalyst for direct methanol fuel cells (DMFC) with simultaneous methanol tolerance and oxygen promotion. Int J Hydrogen Ener 34(23):9523–9530CrossRefGoogle Scholar
  51. 51.
    Markovic NM, Adzic RR, Cahan BD, Yeager EB (1994) Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem 377(1-2):249–259CrossRefGoogle Scholar
  52. 52.
    Zinola CF (2018) Electrochemical transformation of platinum spheres into nanocubes and nanocubebipyramids. Electrochem Commun 87:35–39CrossRefGoogle Scholar
  53. 53.
    Topalov AA, Zeradjanin AR, Cherevko S, Mayrhofer KJJ (2014) The impact of dissolved reactive gases on platinum dissolution in acidic media. Electrochem Commun 40:49–53CrossRefGoogle Scholar
  54. 54.
    Nørgaard CF, Stamatin SN, Skou EM (2014) Redeposition of electrochemically dissolved platinum as nanoparticles on carbon. Int J Hydrogen Ener 39(30):17322–17326CrossRefGoogle Scholar
  55. 55.
    Peters DG, Lingane JJ (1962) Anodic formation and chemical analysis of oxychloride films on platinum electrodes. J Electroanal Chem 4(4):193–217Google Scholar
  56. 56.
    Farias MJS, Cheuquepán W, Tanaka AA, Feliu JM (2018) Requirement of initial long-range substrate structure in unusual CO pre-oxidation on Pt(111) electrodes. Electrochem Commun 97:60–63CrossRefGoogle Scholar
  57. 57.
    Schaller RF, Thomas S, Birbilis N, Scully JR (2015) Spatially resolved mapping of the relative concentration of dissolved hydrogen using the scanning electrochemical microscope. Electrochem Commun 51:54–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrochemical Engineering Group, School of SciencesUdelarMontevideoUruguay

Personalised recommendations