Advertisement

Photoelectrochemical platform for sensing propyl gallate in edible oil samples based on CdTe quantum dots and poly(D-glucosamine)

  • Fernanda Maria dos Reis Lima
  • Saimon Moraes Silva
  • André da Silva Freires
  • Marília Oliveira Fonseca Goulart
  • Flavio Santos Damos
  • Rita de Cassia Silva Luz
Original Paper
  • 34 Downloads

Abstract

This paper reports the development of a photoelectrochemical platform based on indium tin oxide (ITO) electrode modified with carboxyl-functionalized cadmium telluride quantum dots (CdTe) and poly(d-glucosamine) (PDG) for the determination of propyl gallate in edible oil samples. The photoelectrochemical (PEC) sensor was designed as ITO/CdTe/PDG and characterized by amperometry and electrochemical impedance spectroscopy. The ITO/CdTe/PDG PEC sensor showed higher photocurrent response for the propyl gallate compared to the photocurrents obtained for the bare ITO and ITO/CdTe electrodes. The amperograms showed that the photocurrent of the propyl gallate is much larger in the presence of oxygen suggesting that the presence of this molecule in the solution is essential to increase the sensitivity of the system. In addition, high selectivity was obtained when the proposed sensor was evaluated in samples containing other antioxidants and some ions. The linear range of response and detection limit for the determination of propyl gallate were 0.3 to 150 μmol L−1 (n = 10) and 0.13 μmol L−1, respectively. Recovery tests for propyl gallate in edible oils showed recovery percentages between 96.2 and 111.3%.

Keywords

Propyl gallate Photoelectrochemical platform CdTe quantum dots Poly(D-glucosamine) 

Notes

Funding information

The authors received financial supports from FAPEMA (PRONEM-00155/16; UNIVERSAL-00927/16; UNIVERSAL-01194/17), CNPq (303525/2016-9; 421139/2016-1; 305680/2015-3; 426337/2016-6), and Instituto Nacional de Ciência e Tecnologia em Bioanalıtica (465389/2014-7).

Supplementary material

10008_2018_4177_MOESM1_ESM.docx (951 kb)
ESM 1 (DOCX 950 kb)

References

  1. 1.
    Frankel EN, Satué-Gracia T, Meyer AS, German JB (2002) Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions. J Agric Food Chem 50(7):2094–2099CrossRefGoogle Scholar
  2. 2.
    Souza VGL, Fernando AL, Pires JRA, Rodrigues PF, Lopes AAS, Fernandes FMB (2017) Physical properties of chitosan films incorporated with natural antioxidants. Ind Crop Prod 107:565–572CrossRefGoogle Scholar
  3. 3.
    Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M (2016) Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography. Food Chem 200:249–254CrossRefGoogle Scholar
  4. 4.
    Saad B, Sing YY, Nawi MA, Hashim N, Ali ASM, Saleh MI, Sulaiman SF, Talib KM, Ahmad K (2007) Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem 105(1):389–394CrossRefGoogle Scholar
  5. 5.
    Lin X, Ni Y, Kokot S (2013) Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal Chim Acta 765:54–62CrossRefGoogle Scholar
  6. 6.
    Bast A, Haenen GRMM (2002) The toxicity of antioxidants and their metabolites. Environ Toxicol Pharmacol 11(3-4):251–258CrossRefGoogle Scholar
  7. 7.
    Kütter MT, Romano LA, Ventura-Lima J, Tesser MB, Monserrat JM (2014) Antioxidant and toxicological effects elicited by alpha-lipoic acid in aquatic organisms. Comp Biochem Physiol Part C: Toxicol Pharmacol 162:70–76Google Scholar
  8. 8.
    Wang W, Kannan P, Xue J, Kannan K (2016) Synthetic phenolic antioxidants, including butylated hydroxytoluene (BHT), in resin-based dental sealants. Environ Res 151:339–343CrossRefGoogle Scholar
  9. 9.
    Hettiarachchy NS, Glenn KC, Gnanasambandam R, Johnson MG (1996) Natural Antioxidant Extract from Fenugreek (Trigonellafoenumgraecum) for Ground Beef Patties. J Food Sci 61(3):516–519CrossRefGoogle Scholar
  10. 10.
    Cui M, Huang J, Wang Y, Wu Y, Luo X (2015) Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene–carbon nanotube composites. Biosens Bioelectron 68:563–569CrossRefGoogle Scholar
  11. 11.
    Dai Y, Li X, Fan L, Lu X, Kan X (2016) “Sign-on/off” sensing interface design and fabrication for propyl gallate recognition and sensitive detection. Biosens Bioelectron 86:741–747CrossRefGoogle Scholar
  12. 12.
    Alexander M, Pandian K (2013) Carbon sphere-assisted preparation of TiO2 hollow nanospheres and its electrocatalytic reduction of H2O2, oxidation of antioxidants and ethanol sensor. J Solid State Electrochem 17(8):2173–2182CrossRefGoogle Scholar
  13. 13.
    Babu RS, Prabhu P, Narayanan SS (2016) Facile immobilization of potassium-copper hexacyanoferrate nanoparticles using a room-temperature ionic liquid as an ionic binder and its application towards BHA determination. J Solid State Electrochem 20(6):1575–1583CrossRefGoogle Scholar
  14. 14.
    Karovicova J, Simko P (2000) Determination of synthetic phenolic antioxidants in food by high-performance liquid chromatography. J Chromatogr A 882(1-2):271–281CrossRefGoogle Scholar
  15. 15.
    Xiu-Qin L, Chao J, Yan-Yan S, Min-Li Y, Xiao-Gang C (2009) Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chem 113(2):692–700CrossRefGoogle Scholar
  16. 16.
    Wang JY, Wu HL, Sun YM, Gu HW, Liu Z, Liu YJ, Yu RQ (2014) Simultaneous determination of phenolic antioxidants in edible vegetables oils by HPLC-FLD assisted second order calibration based on ATLD algorithm. J Chromatogr B 947–948:32–40CrossRefGoogle Scholar
  17. 17.
    Prasad UV, Divakar TE, Hariprasad K, Sastry CSP (1987) Spectrophotometric determination of some antioxidants in oils and fats. Food Chem 25(2):159–164CrossRefGoogle Scholar
  18. 18.
    Capitán-Vallvey LF, Valencia MC, Nicolás EA (2001) Monoparameter sensors fot the determination of the antioxidants butylated hydroxyanisole and n-propil gallate in foods and cosmetics by flow injection spectrophotometry. Analyst 126(6):897–902CrossRefGoogle Scholar
  19. 19.
    Hun X, Wang S, Wang S, Zhao J, Luo X (2017) A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode. Sensors Actuators B Chem 249:83–89CrossRefGoogle Scholar
  20. 20.
    Li Y, Sun L, Liu Q, Han E, Hao N, Zhang L, Wang S, Cai J, Wang K (2016) Photoelectrochemical CaMV35S biosensor for discriminating transgenic from non-transgenic soybean based on SiO2@CdTe quantum dots core-shell nanoparticles as signal indicators. Talanta 161:211–218CrossRefGoogle Scholar
  21. 21.
    Xu X, Liu D, Luo L, Li L, Wang K, You T (2017) Photoelectrochemical aptasensor based on CdTe quantum dots-single walled carbon nanohorns for the sensitive detection of streptomycin. Sensors Actuators B Chem 251:564–571CrossRefGoogle Scholar
  22. 22.
    Riedel M, Hölzel S, Hille P, Schörmann J, Eickhoff M, Lisdat F (2017) InGaN/GaN nanowires as a new platform for photoelectrochemical sensors – detection of NADH. Biosens Bioelectron 94:298–304CrossRefGoogle Scholar
  23. 23.
    Ojani R, Safshekan S, Raoof JB (2014) Photoelectrochemical oxidation of hydrazine on TiO2 modified titanium electrode: its application for detection of hydrazine. J Solid State Electrochem 18(3):779–783CrossRefGoogle Scholar
  24. 24.
    Zhang H, Gao Q, Li H (2016) A novel photoelectrochemical hydrogen peroxide sensor based on nickel(II)-potassium hexacyanoferrate-graphene hybrid materials modified n-silicon electrode. J Solid State Electrochem 20(6):1565–1573CrossRefGoogle Scholar
  25. 25.
    Alves SA, Soares LL, Goulart LA, Mascaro LH (2016) Solvent effects on the photoelectrochemical properties of WO3 and its application as dopamine sensor. J Solid State Electrochem 20(9):2461–2470CrossRefGoogle Scholar
  26. 26.
    Wang P, Huang D, Guo W, Di J (2018) Photoelectrochemical sensing for hydroquinone based on gold nanoparticle-modified indium tin oxide glass electrode. J Solid State Electrochem 22(1):123–128CrossRefGoogle Scholar
  27. 27.
    Zhang H, Li S, Zhang F, Wang M, Lin X, Li H (2017) Simultaneous detection of hydroquinone and catechol on electrochemical-activated glassy carbon electrode by simple anodic and cathodic polarization. J Solid State Electrochem 21(3):735–745CrossRefGoogle Scholar
  28. 28.
    Wang H, Ye H, Zhang B, Zhao F, Zeng B (2017) Electrostatic interaction mechanism based synthesis of a Z-scheme BiOI–CdS photocatalyst for selective and sensitive detection of Cu2+. J Mater Chem A 5(21):10599–10608CrossRefGoogle Scholar
  29. 29.
    Moakhar RS, Goh GKL, Dolati A, Ghorbani M (2017) Sunlight-driven photoelectrochemical sensor for direct determination of hexavalent chromium based on Au decorated rutile TiO2 nanorods. Appl Catal B 201:411–418CrossRefGoogle Scholar
  30. 30.
    Han DM, Jian LY, Tang WY, Jia WP, Zhou QZ, Chen JL (2016) A highly selective photoelectrochemical sensor based on click chemistry for copper (II) determination. J Electroanal Chem 778:148–151CrossRefGoogle Scholar
  31. 31.
    Han DM, Ma ZY, Zhao WW, Xu JJ, Chen HY (2013) Ultrasensitive photoelectrochemical sensing of Pb2+ based on allosteric transition of G-Quadruplex DNAzyme. Electrochem Commun 35:38–41CrossRefGoogle Scholar
  32. 32.
    Monteiro TO, Tanaka AA, Damos FS, Luz RCS (2017) Photoelectrochemical determination of tert-butylhydroquinone in edible oil samples employing CdSe/ZnS quantum dots and LiTCNE. Food Chem 227:16–21CrossRefGoogle Scholar
  33. 33.
    Wang K, Wu J, Liu Q, Jin Y, Yan J, Cai J (2012) Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation. Anal Chim Acta 745:131–136CrossRefGoogle Scholar
  34. 34.
    Wen G, Wen X, Choi MMF, Shuang S (2015) Photoelectrochemical sensor for detecting Hg2+ based on exciton trapping. Sensors Actuators B Chem 221:1449–1454CrossRefGoogle Scholar
  35. 35.
    Gong J, Fang T, Peng D, Li A, Zhang L (2015) A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI–BiOI composite. Biosens Bioelectron 73:256–263CrossRefGoogle Scholar
  36. 36.
    Iagatti A, Tarpani L, Fiacchic E, Bussotti L, Latterini L, Foggi P (2017) Charge transfer dynamics between MPA capped CdTe quantum dots and methyl viologen. J Photochem Photobiol A 346:382–389CrossRefGoogle Scholar
  37. 37.
    Zhang ZX, Zhao CZ (2013) Progress of photoelectrochemical analysis and sensors. Chin J Anal Chem 41(3):436–444CrossRefGoogle Scholar
  38. 38.
    Li X, Yang Q, Hua H, Chen L, He X, Hu C, Xi Y (2015) CdS/CdSe core/shell nanowall arrays for high sensitive photoelectrochemical sensors. J Alloys Compd 630:94–99CrossRefGoogle Scholar
  39. 39.
    Zucolotto V, Gatta´s-Asfura KM, Tumolo T, Perinotto AC, Antunes PA, Constantino CJL, Baptista MS, Leblanc RM, Oliveira Jr ON (2005) Nanoscale manipulation of CdSe quantum dots in layer-by-layer films: influence of the host polyelectrolyte on the luminescent properties. Appl Surf Sci 246:397–402, 4.Google Scholar
  40. 40.
    Meka VS, Sing MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P (2017) A comprehensive review on polyelectrolyte complexes. Drug Discov Today 22(11):1697–1706CrossRefGoogle Scholar
  41. 41.
    Bach LG, Islam MR, Lee DC, Lim KT (2013) Poly(glycidyl methacrylate) grafted CdSe quantum dots by surface-initiated atom transfer radical polymerization: Novel synthesis, characterization, properties, and cytotoxicity studies. Appl Surf Sci 283:546–553CrossRefGoogle Scholar
  42. 42.
    Palazzo C, Trapani G, Ponchel G, Trapani A, Vauthier C (2017) Mucoadhesive properties of low molecular weight chitosan- or glycol chitosan- and corresponding thiomer-coated poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur J Pharm Biopharm 117:315–323CrossRefGoogle Scholar
  43. 43.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  44. 44.
    Dwiecki K, Neunert G, Nogala-Kałucka M, Polewski K (2015) Fluorescence quenching studies on the interaction of catechin-quinone with CdTe quantum dots. Mechanism elucidation and feasibility studies. Spectrochim Acta Part A 149:523–530CrossRefGoogle Scholar
  45. 45.
    Tanne J, Schäfer D, Khalid W, Parak WJ, Lisdat F (2011) Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal Chem 83(20):7778–7785CrossRefGoogle Scholar
  46. 46.
    Zarei E, Ojani R (2017) Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J Solid State Electrochem 21(2):305–336CrossRefGoogle Scholar
  47. 47.
    Agui L, Lopez-Huertas MA, Yañez-Sedeño P, Pingarrón JM (1996) Voltammetric behaviour of poly(3-methylthiophend)-coated cylindrical carbon fibre microelectrodes: electrochemical oxidation of the antioxidant propyl gallate. J Electroanal Chem 414:141–148Google Scholar
  48. 48.
    Ni Y, Wang L, Kokot S (2000) Voltammetric determination of butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate and tert-butylhydroquinone by use of chemometric approaches. Anal Chim Acta 412(1-2):185–193CrossRefGoogle Scholar
  49. 49.
    Riber J, de la Fuente C, Vazquez MD, Tascón ML, Batanero OS (2000) Electrochemical study of antioxidants at a polypyrrole electrode modified by a nickel phthalocyanine complex. Application to their HPLC separation and to their FIA system detections. Talanta 52(2):241–252CrossRefGoogle Scholar
  50. 50.
    Morales MD, Gonzalez MC, Reviejo AJ, Pingarron JM (2005) A composite amperometric tyrosinase biosensor for the determination of the additive propyl gallate in foodstuffs. Microchem J 80(1):71–78CrossRefGoogle Scholar
  51. 51.
    Vikraman AE, Rasheed Z, Rajith L, Lonappan LA, Krishnapillai GK (2013) MWCNT-modified gold electrode sensor for the determination of propyl gallate in vegetable oils. Food Anal Methods 6(3):775–780CrossRefGoogle Scholar
  52. 52.
    Caramit RP, Araújo ASA, Fogliatto DK, Viana LH, Trindade MAG, Ferreira VS (2015) Carbon-nanotube–modified screen-printed electrodes, cationic surfactant, and peak deconvolution procedure: alternatives to provide satisfactory simultaneous determination of three synthetic antioxidants in complex samples. Anal Methods 7(9):3764–3771CrossRefGoogle Scholar
  53. 53.
    Cyriac ST, Thomas D, Vikraman AE, Kumarz KG (2016) Electrochemical sensor for propyl gallate, based on synergic effect of gold nanoparticle and poly(p-aminobenzenesulfonic acid). J Electrochem Soc 163(14):B683–B688CrossRefGoogle Scholar
  54. 54.
    Bavol D, Economou A, Zima J, Barek J, Dejmkova H (2018) Simultaneous determination of tert-butylhydroquinone, propyl gallate, and butylated hydroxyanisole by flow-injection analysis with multiple-pulse amperometric detection. Talanta 178:231–236CrossRefGoogle Scholar
  55. 55.
    Xu G, Chi Y, Li L, Liu S, Kan X (2015) Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol–gel film. Food Chem 177:37–42CrossRefGoogle Scholar
  56. 56.
    Sastry CSP, Rao KE, Prasad UV (1982) Spectrophotometric determination of some phenols with sodium metaperiodate and aminophenols of some phenols with sodium metaperiodate. Talanta 29(11):917–920CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fernanda Maria dos Reis Lima
    • 1
  • Saimon Moraes Silva
    • 2
  • André da Silva Freires
    • 1
  • Marília Oliveira Fonseca Goulart
    • 3
  • Flavio Santos Damos
    • 1
  • Rita de Cassia Silva Luz
    • 1
  1. 1.Department of ChemistryFederal University of MaranhãoSão LuísBrazil
  2. 2.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia
  3. 3.Institute of Chemistry and BiotechnologyFederal University of AlagoasMaceióBrazil

Personalised recommendations