Advertisement

Potential of Si14Ge14 and B14P14 nanocages as electrodes of metal-ion batteries: a theoretical investigation

  • Razieh RazaviEmail author
  • Meysam NajafiEmail author
Original Paper
  • 40 Downloads

Abstract

In this study, the potential of Si14Ge14 and B14P14 as anode electrodes in metal-ion batteries by using of the density functional theory was investigated. The effects of halogen adsorption of the Si14Ge14 and B14P14 on potential of metal-ion batteries were examined. Results indicated that the B14P14 as anode in metal-ion batteries has higher potential than Si14Ge14. Results have shown that the K-ion battery has higher cell voltage and higher potential than Li-ion and Na-ion batteries. Results shown that the halogen adsorption of nanocages increases the cell voltage of studied metal-ion batteries. Results displayed that the F-metal-ion batteries have higher cell voltage and higher performance than Cl- and Br-metal-ion batteries. Finally, the F-B13P14 as anode electrode in the K-ion battery has the highest potential in industry.

Keywords

Battery Nanocage Adsorption Voltage Anode and halogen 

Notes

Acknowledgments

Thanks Dr. Ghafar Torkashvand for his valuable suggestions.

References

  1. 1.
    Gao W, Haratipour P, Kahkha MRR, Tahvili A (2018) Ultrason Sonochem 44:152–161Google Scholar
  2. 2.
    Mahdavinia GH, Amani AM, Sepehrian H (2012) Chin J Chem 30(3):703–708Google Scholar
  3. 3.
    Afshar A, Salami Hosseini A, Behzadfar E (2014) Sci Iran Trans C 21:2107–2115Google Scholar
  4. 4.
    Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Norouzi L (2009) Monatsh Chem 140(5):547–552Google Scholar
  5. 5.
    Kiani A, Haratipour P, Ahmadi M (2017) Zare-Dorabei. J Water Supply Res Technol 66(4):239–248Google Scholar
  6. 6.
    Mostavi A, Kabir M, Ozevin D (2017) Appl Phys Lett 111(20):201905Google Scholar
  7. 7.
    Hadipour NL, Ahmadi Peyghan A (2015) J Phys Chem C 119(11):6398–6404Google Scholar
  8. 8.
    Khataee A, Bayat G, Azamat J (2017) J Mol Graph Model 71:176–183Google Scholar
  9. 9.
    Peyghan AA, Rastegar SF, Hadipour NL (2014) Phys Lett A 378:2184–2190Google Scholar
  10. 10.
    Beheshtian J, Peyghan AA, Noei M (2013) Sensors Actuator B Chem 181:829–834Google Scholar
  11. 11.
    Parsaee Z, Haratipour P, Lariche MJ, Vojood A (2018) Ultrason Sonochem 41:337–349Google Scholar
  12. 12.
    Rahimi A, Sepehr M, Lariche MJ (2018) Phys E: Low Dimens Syst Nanostruct 97:347–362Google Scholar
  13. 13.
    Beheshtian J, Ahmadi Peyghan A, Bagheri Z (2012) J Mol Model 19:255–261Google Scholar
  14. 14.
    Beheshtian J (2012) Monatsh Chem Chem Mon 143(12):1623–1626Google Scholar
  15. 15.
    Pirbazari AE, Monazzam P, Kisomi BF (2017) Desalin Water Treat 63:283–292Google Scholar
  16. 16.
    Pirbazari AE, Kisom BF, Khararoodi MG (2016) Desalin Water Treat 57(39):18202–18216Google Scholar
  17. 17.
    Momtazan M, Niyakan M, Jaderi T, Hoseini Ahangari SA (2016) Res J Med Sci 10:49–53Google Scholar
  18. 18.
    Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM (2008) Heteroat Chem 19(3):320–324Google Scholar
  19. 19.
    Beheshtian J, Peyghan AA, Bagheri Z (2012) Appl Surf Sci 258(22):8980–8984Google Scholar
  20. 20.
    Peyghan AA, Noei M, Tabar MB (2013) J Mol Model 19(8):3007–3014Google Scholar
  21. 21.
    Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM (2010) J Heterocycl Chem 47:616–623Google Scholar
  22. 22.
    Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM (2013) Monatsh Chem 144(8):1191–1196Google Scholar
  23. 23.
    Amani AM (2014) Drug Res 65:5–8Google Scholar
  24. 24.
    Shao D, Tang D, Yang J, Li Y (2015) J Power Sources 297:344–350Google Scholar
  25. 25.
    Haratipour P, Baghban A, Mohammadi AH, Bahadori A (2017) J Mol Liq 242:146–159Google Scholar
  26. 26.
    Chen B, Chu S, Cai R, Wei S, Hu R (2016) Comput Mater Sci 123:44–51Google Scholar
  27. 27.
    Peyghan AA, Noei M (2014) J Mex Chem Soc 58:46–51Google Scholar
  28. 28.
    Mahdavinia GH, Rostamizadeh S, Amani AM (2012) Green Chem Lett Rev 5(3):255–281Google Scholar
  29. 29.
    Lee SW, Yabuuchi N (2010) Nat Nanotechnol 5(7):531–537Google Scholar
  30. 30.
    Habibi A, Tarameshloo Z, Rostamizadeh S, Amani AM (2012) Lett Org Chem 9(3):155–159Google Scholar
  31. 31.
    Qie L, Chen WM, Wang ZH (2012) Adv Mater 24(15):2047–2050Google Scholar
  32. 32.
    Doranehgard MH, Samadyar H, Mesbah M, Haratipour P, Samiezade S (2017) Fuel 202:29–35Google Scholar
  33. 33.
    Liu Y, Artyukhov VI, Liu M (2013) J Phys Chem Lett 4(10):1737–1742Google Scholar
  34. 34.
    Rostamizadeh S, Ghaieni HR, Aryan R, Amani AM (2010) Synth Commun 40(20):3084–3092Google Scholar
  35. 35.
    Peyghan AA, Noei M, Yourdkhani S (2013) Superlattice Microst 59:115–122Google Scholar
  36. 36.
    Ouyang X, Lei M, Shi S, Luo C, Liu D (2009) J Alloys Compd 476(1-2):462–465Google Scholar
  37. 37.
    Beheshtian J, Peyghan AA, Bagheri Z (2013) Struct Chem 24(5):1565–1570Google Scholar
  38. 38.
    Shi S, Lu P, Liu Z, Qi Y, Hector LG (2012) J Am Chem Soc 134(37):15476–15487Google Scholar
  39. 39.
    Peyghan AA, Soltani A, Pahlevani AA (2013) Appl Surf Sci 270:25–32Google Scholar
  40. 40.
    Joshaghani M, Ghasemi-Fare O, Ghavami M (2018) In IFCEE 12:675–685Google Scholar
  41. 41.
    Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D (2018) J Therm Anal Calorim 12:1–13Google Scholar
  42. 42.
    Jafarzadeh F, Jahromi HF, Yoosefi S, Sehizadeh M, Joshaghani M, Alavi AM (2012) In the 15th world conference on earthquake engineering, Beijing, China (15WCEE)Google Scholar
  43. 43.
    Pourmand G, Safavi M, Ahmadi A, Houdeh E, Noori M, Mashhadi R, Pourmand N (2016) Cancer Urol J 13:2845–2848Google Scholar
  44. 44.
    Bakhshi H, Khodabandeh E, Akbari O, Toghraie D, Joshaghani M, Rahbari A (2018) Intern J Num Meth For Heat Fluid Flow 12:1–5Google Scholar
  45. 45.
    Peyghan AA, Baei MT, Moghimi M (2012) Comput Theor Chem 997:63–69Google Scholar
  46. 46.
    Golberg D, Bando Y, Huang Y (2010) ACS Nano 4(6):2979–2993Google Scholar
  47. 47.
    Chen X, Wu P, Rousseas M, Okawa D (2009) J Am Chem Soc 131(3):890–891Google Scholar
  48. 48.
    Beheshtian J, Kamfiroozi M, Bagheri Z (2012) Chin J Chem Phys 25(1):60–64Google Scholar
  49. 49.
    Si H, Lian G, Wang A, Cui D, Zhao M, Wang Q, Wong C (2015) Nano Lett 15(12):8122–8128Google Scholar
  50. 50.
    Oku T, Narita I, Nishiwaki A (2004) Mater Manuf Process 19(6):1215–1239Google Scholar
  51. 51.
    Han L, Krstic P (2017) Nanotechnology 28:701–706Google Scholar
  52. 52.
    Hosseini J, Rastgou A, Moradi R (2017) J Mol Liq 225:913–918Google Scholar
  53. 53.
    Najafi M (2017) Can J Chem 95(6):687–690Google Scholar
  54. 54.
    Nejati K, Hosseinian A, Bekhradnia A, Vessally E, Edjlali L (2017) J Mol Graph Model 74:1–7Google Scholar
  55. 55.
    Hosseinian A, Soleimani S, Arshadi S, Vessally E, Edjlali L (2017) Phys Lett A 381:2010–2015Google Scholar
  56. 56.
    Soltani A, Baei MT, Mirara M, Sheikhi M (2014) Tazikeh. J Phys Chem Solids 75(10):1099–1105Google Scholar
  57. 57.
    Wu H, Fan X (2012) Kuo JL. Int J Hydrog Energy 37(19):14336–14341Google Scholar
  58. 58.
    Ayub K (2016) J Mater Chem C 4(46):10919–10934Google Scholar
  59. 59.
    Kalateh K, Kheirollahpoor S (2015) Int J New Chem 2:213–222Google Scholar
  60. 60.
    Fowler PW, Heine T, Mitchell D, Schmidt R (1996) J Chem Soc Faraday Trans 92(12):2197–2201Google Scholar
  61. 61.
    Moon WH, Son MS, Hwang HJ (2007) Appl Sur Sci 253(17):7078–7081Google Scholar
  62. 62.
    Andzelm J, Kolmel C (1995) J Chem Phys 103(21):9312–9320Google Scholar
  63. 63.
    Gan LH, Zhao JQ (2009) Phys E 41(7):1249–1252Google Scholar
  64. 64.
    Boys SF, Bernardi F (1970) Mol Phys 19(4):553–566Google Scholar
  65. 65.
    Mousavi SM, Hashemi SA, Amani AM, Jahandideh S, Mojoudi F (2017) Poly Rene Reso 8:177–196Google Scholar
  66. 66.
    Mousavi SM, Hashemi SA, Arjmand M, Sharif F, Jahandideh S (2018) Chem Select 3(25):7200–7207Google Scholar
  67. 67.
    Fathollahi M, Rostamizadeh S, Amani AM (2018) Comb Chem High Throughput Screen 21(1):5–13Google Scholar
  68. 68.
    Amani AM (2014) Bulg Chem Commun 46:795–800Google Scholar
  69. 69.
    Hashemi SA, Mousavi SM, Faghihi R, Sina S, Amani AM (2018) Radiat Phys Chem 146:77–85Google Scholar
  70. 70.
    Beheshtkhoo N, Kouhbanani MA, Savardashtaki A, Amani AM, Taghizadeh S (2018) Appl Phys A Mater Sci Process 124(5):363–367Google Scholar
  71. 71.
    Rostamizadeh S, Amani AM, Shadjou N (2012) Phosphorus Sulfur Silicon Relat Elem 187:238–244Google Scholar
  72. 72.
    Amani AM (2014) Drug Res 64:420–423Google Scholar
  73. 73.
    Rostamizadeh S, Shadjou N, Amani AM, Aryan RA (2008) J Heterocycl Chem 45(6):1761–1764Google Scholar
  74. 74.
    Bagheri Z (2016) Appl Sur Sci 383:294–299Google Scholar
  75. 75.
    Chen S, Ishii J, Horiuchi S, Fujita M, Izgorodina E (2017) Phys Chem Chem Phys 19(26):17366–17372Google Scholar
  76. 76.
    Nejati K, Hosseinian A (2014) J Mol Liq 229:167–171Google Scholar
  77. 77.
    Nejati K (2017) J Mol Graph Mod 74:1–7Google Scholar
  78. 78.
    Beheshtian J (2013) J Mol Model 19(3):1445–1450Google Scholar
  79. 79.
    Feng L (2011) Comp Theor Chem 964(1-3):56–64Google Scholar
  80. 80.
    Wang J (2008) J Chem Phys 128(8):84306–84306Google Scholar
  81. 81.
    Song L, Ci L, Lu H, Sorokin PB (2010) Nano Lett 10(8):3209–3215Google Scholar
  82. 82.
    Wang Z (2013) Nano Lett 13(9):4511–4516Google Scholar
  83. 83.
    Liu N (2012) Nano Lett 12(6):3315–3321Google Scholar
  84. 84.
    Sun J (2015) Nat Nanotechnol 10(11):980–985Google Scholar
  85. 85.
    Tarascon JM (2001) Nature 414(6861):359–367Google Scholar
  86. 86.
    Poizot P (2000) Nature 407(6803):496–499Google Scholar
  87. 87.
    Yuan Y (2015) Nano Lett 15(5):2998–3007Google Scholar
  88. 88.
    Lee S (2014) ACS Nano 9:626–632Google Scholar
  89. 89.
    Holtz ME (2014) Nano Lett 14(3):1453–1459Google Scholar
  90. 90.
    Niu J (2014) Nano Lett 14(7):4005–4010Google Scholar
  91. 91.
    Erickson EM (2014) J Phys Chem Lett 5(19):3313–3324Google Scholar
  92. 92.
    Luo L (2014) ACS Nano 8(11):11560–11566Google Scholar
  93. 93.
    Gregorczyk KE (2013) ACS Nano 7(7):6354–6360Google Scholar
  94. 94.
    Su Q (2013) ACS Nano 7(10):9115–9121Google Scholar
  95. 95.
    Wan F, Guo JZ, Zhang XH, Han DX, Niu L, Wu XL (2016) ACS Appl Mater Interfaces 8(12):7790–7799Google Scholar
  96. 96.
    Wang J, Liu DH, Wang YY, Hou BH, Zhang JP, Wu XL (2016) J Power Sour 307:738–745Google Scholar
  97. 97.
    Wang J, Lü HY, Fan CY, Wan F, Guo JZ, Wang YY, Wu XL (2017) J Alloys Compd 694:208–216Google Scholar
  98. 98.
    Wu XL, Guo YG, Wan LJ (2013) Chem Asian J 8(9):1948–1958Google Scholar
  99. 99.
    Ning QL, Hou BH, Wang YY, Liu DS (2018) ACS Appl Mater Interfaces.  https://doi.org/10.1021/acsami.8b11103
  100. 100.
    Wan F, Lü HY, Zhang XH, Liu DH, Zhang JP, He X, Wu XL (2016) J Alloys Compd 672:72–78Google Scholar
  101. 101.
    Wan F, Lü HY, Wu XL, Yan X, Wang G, Han DX, Niu L (2016) Energy Storage Mat 5:214Google Scholar
  102. 102.
    Oku T, Kuno M (2003) Diam Relat Mater 12(3-7):840–845Google Scholar
  103. 103.
    Dunning TH (2000) J Phys Chem A 104(40):9062–9065Google Scholar
  104. 104.
    Ruiz VG, Liu W, Zojer E, Tkatchenko A (2012) Phys Rev Lett 108(14):146103–146107Google Scholar
  105. 105.
    Zhao Y, Truhlar DG (2008) Theor Chem Account 120(1-3):215–218Google Scholar
  106. 106.
    Mahmood A, Longo RL (2014) Phys Chem Chem Phys 87:1–7Google Scholar
  107. 107.
    Wheeler SE, Moran A, Pieniazek S, Houk K (2009) J Phys Chem A 113(38):10376–10381Google Scholar
  108. 108.
    Chermette H (1999) J Comput Chem 20(1):129–154Google Scholar
  109. 109.
    Geerlings P, Proft FD, Langenaeker W (2003) Chem Rev 103(5):1793–1873Google Scholar
  110. 110.
    Roy RK, Saha S (2010) Prog Chem Sect C: Phys Chem 106:118–162Google Scholar
  111. 111.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68(8):3801–3808Google Scholar
  112. 112.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105(26):7512–7516Google Scholar
  113. 113.
    Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N (2009) Chin Chem Lett 20(7):779–783Google Scholar
  114. 114.
    Landi BJ, Ganter MJ, Cress CD (2009) Energy Environ Sci 2:638–654Google Scholar
  115. 115.
    Rostamizadeh S, Aryan R, Ghaieni HR, Amani AM (2008) Monatsh Chem 139(10):1241–1245Google Scholar
  116. 116.
    Salari AA (2017) Inorg Chim Acta 456:18–23Google Scholar
  117. 117.
    Mahdavinia GH, Rostamizadeh S, Amani AM, Sepehrian H (2012) Heterocycl Commun 18:33–37Google Scholar
  118. 118.
    Bagheri Z, Peyghan AA (2013) Comput Theor Chem 1008:20–26Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of JiroftJiroftIran
  2. 2.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations