Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 627–634 | Cite as

Functional properties and electrochemical performance of Ca-doped Sr2-xCaxFe1.5Mo0.5O6-δ as anode for solid oxide fuel cells

  • Denis A. OsinkinEmail author
  • S. M. Beresnev
  • A. V. Khodimchuk
  • I. V. Korzun
  • N. I. Lobachevskaya
  • A. Yu Suntsov
Original Paper
  • 111 Downloads

Abstract

Performance of Ca-doped strontium ferrite-molybdate Sr2-xCaxFe1.5Mo0.5O6-δ (x = 0, 0.05, 0.15, 0.3, 0.5) has been studied under reducing conditions. Thermogravimetry (TG) analysis in 5% H2/Ar and DSC measurements in high-purity argon demonstrated that the compositions are highly stable and there are no phase transitions. The best electrochemical and electrical performances of about 0.12 Ω cm2 and 33 S/cm at 800 °C in wet hydrogen, respectively, were obtained for the Sr1.85Ca0.15Fe1.5Mo0.5O6-δ anode. The EIS spectra were analyzed by means of distribution relaxation times and non-linear least squares methods, which made it possible to determine the behavior of the rate-limiting steps of hydrogen oxidation. Solid oxide fuel cells (SOFC) of planar design with the 1.5 mm LaGaO3-based supporting electrolyte, with the Sr1.85Ca0.15Fe1.5Mo0.5O6-δ symmetrical electrodes and with the Sr2-xCaxFe1.5Mo0.5O6-δ (x = 0.15 and 0.3) anode and the 70 wt% Pr0.9Y0.1BaCo2O6–δ + 30 wt% SDC cathode have been studied. The obtained results demonstrated a low anode overvoltage, which was about 0.12 V at 1 A/cm2 and 800 °C in wet hydrogen. The maximum power density of SOFC with the Sr1.85Ca0.15Fe1.5Mo0.5O6-δ anode and cobaltite cathode was about 0.18 W/cm2 at 800 °С under air/wet hydrogen conditions. The obtained results elucidate that Sr1.85Ca0.15Fe1.5Mo0.5O6-δ is a promising anode for solid oxide fuel cells.

Keywords

Ca-doped Sr2-xCaxFe1.5Mo0.5O6-δ Distribution relaxation times Anode Area-specific resistance EIS Symmetrical SOFC 

Notes

Acknowledgments

This work was partly carried out using facilities of the shared access center ‘Composition of Compounds’ IHTE, UB RAS. The authors would like to thank V.A. Eremin, A.S. Farlenkov, and T.A. Dem’yanenko for the assistance in the study.

Funding

The investigation of new anode materials was financially supported by the Russian Science Foundation (project no. 17-79-10207). Synthesis of solid solutions was carried out in accordance with the plans of the Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences (research, development and technological work АААА-А16-116122810216-3). The research was partially supported by the Government of the Russian Federation, agreement No. 02.A03.21.0006 (Act 211).

References

  1. 1.
    Irvine JTS, Connor P (2013) Solid oxide fuels cells: facts and figures. Springer-Verlag, LondonCrossRefGoogle Scholar
  2. 2.
    Yang CT, Wei WJ, Roosen A (2004) Reaction kinetics and mechanisms between La0.65Sr0.3MnO3 and 8 mol% yttria-stabilized zirconia. J Am Ceram Soc 87(6):1110–1116CrossRefGoogle Scholar
  3. 3.
    Wiik K, Schmidt CR, Faaland S, Shamsili S, Einarsrud M, Grande T (1999) Reactions between strontium-substituted lanthanum manganite and yttria-stabilized zirconia: I, powder samples. J Am Ceram Soc 82:721–728CrossRefGoogle Scholar
  4. 4.
    Hauch A, Mogensen M (2010) Ni/YSZ electrode degradation studied by impedance spectroscopy: effects of gas cleaning and current density. Solid State Ionics 181(15-16):745–753CrossRefGoogle Scholar
  5. 5.
    Osinkin DA, Kuzin BL, Bogdanovich NM (2013) Time dependence of electrochemical characteristics of high performance CeO2-modified Ni-cermet electrode in multicomponent gas mixtures H2 + H2O + CO + CO2. Solid State Ionics 251:66–69CrossRefGoogle Scholar
  6. 6.
    Liu Q, Dong X, Xiao G, Zhao F, Chen F (2010) A novel electrode material for symmetrical SOFCs. Adv Mater 22(48):5478–5482CrossRefGoogle Scholar
  7. 7.
    Osinkin DA, Beresnev SM, Lobachevskaya NI (2017) Symmetrical solid oxide fuel cell with strontium ferrite-molybdenum electrodes. Russ J Electrochem 53(6):665–669CrossRefGoogle Scholar
  8. 8.
    Ruiz-Morales JC, Marrero-Lopez D, Canales-Vazquezc J, Irvine JTS (2011) Symmetric and reversible solid oxide fuel cells. RSC Adv 1(8):1403–1414CrossRefGoogle Scholar
  9. 9.
    Miao G, Yuan C, Chen T, Zhou Y, Zhan W, Wang S (2016) Sr2Fe1+xMo1-xO6-δ as anode material of cathode-supported solid oxide fuel cells. Int J Hydrog Energy 41(2):1104–1111CrossRefGoogle Scholar
  10. 10.
    Feng J, Yang G, Dai N, Wang Z, Sun W, Rooney D, Qiao J, Sun K (2014) Investigation into the effect of Fe-site substitution on the performance of Sr2Fe1.5Mo0.5O6-δ anodes for SOFCs. J Mater Chem A 2:17628–17634CrossRefGoogle Scholar
  11. 11.
    Hou M, Sun W, Li P, Feng J, Yang G, Qiao J, Wang Z, Rooney D, Feng J, Sun K (2014) Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-δ for intermediate temperature solid oxide fuel cells. J Power Sources 272:759–765CrossRefGoogle Scholar
  12. 12.
    Sun K, Liu J, Feng J, Yuan H, He M, Xu C, Wang Z, Sun W, Qiao J (2017) Investigation of B-site doped perovskites Sr2Fe1.4X0.1Mo0.5O6-δ (X=Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell. J Power Sources 365:109–116CrossRefGoogle Scholar
  13. 13.
    Feng J, Qiao J, Wang W, Wang Z, Sun W, Sun K (2016) Development and performance of anode material based on A-site deficient Sr2-xFe1.4Ni0.1Mo0.5O6-δ perovskites for solid oxide fuel cells. Electrochim Acta 215:592–599CrossRefGoogle Scholar
  14. 14.
    Xiao G, Wang S, Lin Y, Yang Z, Han M, Chen F (2014) Ni-doped Sr2Fe1.5Mo0.5O6-δ as anode materials for solid oxide fuel cells. J Electrochem Soc 161(3):F305–F310CrossRefGoogle Scholar
  15. 15.
    Zhou Q, Cheng Y, Li W, Yang X, Liu J, An D, Tong X, Zhong B, Wang W (2016) Investigation of cobalt-free perovskite Sr2FeTi0.75Mo0.25O6-δ as new cathode for solid oxide fuel cells. Mater Res Bull 74:129–133CrossRefGoogle Scholar
  16. 16.
    Zheng K, Swierczek K, Polfus JM, Sunding MF, Pishahang M, Norby T (2015) Carbon deposition and sulfur poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ electrode materials for symmetrical SOFCs. J Electrochem Soc 162(9):F1078–F1087CrossRefGoogle Scholar
  17. 17.
    Wang S, Hsu Y, Huang M, Chang C, Cheng S (2016) Characteristics of copper-doped SrFe0.75Mo0.25O3-δ ceramic as a cathode material for solid oxide fuel cells. Solid State Ionics 296:120–126CrossRefGoogle Scholar
  18. 18.
    Zhang L, Zhou Q, He Q, He T (2010) Double-perovskites A2FeMoO6-δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. J Power Sources 195(19):6356–6366CrossRefGoogle Scholar
  19. 19.
    Huan Y, Li Y, Yin B, Ding D, Wei T (2017) High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (a = Ca, Sr, Ba). J Power Sources 359:384–390CrossRefGoogle Scholar
  20. 20.
    Dai N, Wang Z, Jiang T, Feng J, Sun W, Qiao J, Rooney D, Sun K (2014) A new family of barium-doped Sr2Fe1.5Mo0.5O6-δ perovskites for application in intermediate temperature solid oxide fuel cells. J Power Sources 268:176–182CrossRefGoogle Scholar
  21. 21.
    Qiao J, Chen W, Wang W, Wang Z, Sun W, Zhang J, Sun K (2016) The Ca element effect on the enhancement performance of Sr2Fe1.5Mo0.5O6-δ perovskite as cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 331:400–407CrossRefGoogle Scholar
  22. 22.
    Osinkin DA, Lobachevskaya NI, Kuzmin AV (2017) Transport and electrochemical properties of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 composite as promising anode for solid oxide fuel cells. Russ J Appl Chem 90(1):41–46CrossRefGoogle Scholar
  23. 23.
    Osinkin DA, Lobachevskaya NI, Suntsov AY (2017) The electrochemical behavior of the promising Sr2Fe1.5Mo0.5O6-δ + Ce0.8Sm0.2O1.9-δ anode for the intermediate temperature solid oxide fuel cells. J Alloys Comp 708:451–455CrossRefGoogle Scholar
  24. 24.
    Osinkin DA, Zabolotskaya EV, Kellerman DG, Suntsov AY (2018) The physical properties and electrochemical performance of Ca-doped Sr2MgMoO6-δ as perspective anode for solid oxide fuel cells. J Solid State Electrochem 22(4):1209–1215CrossRefGoogle Scholar
  25. 25.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71CrossRefGoogle Scholar
  26. 26.
    Osinkin DA, Lobachevskaya NI, Bogdanovich NM (2017) Effect of the copper oxide sintering additive on the electrical and electrochemical properties of anode materials based on Sr2Fe1.5Mo0.5O6-δ. Russ J Appl Chem 90(10):1686–1692CrossRefGoogle Scholar
  27. 27.
    Osinkin DA, Kuzin BL, Bogdanovich NM (2009) Gas diffusion hindrances on Ni cermet anode in contact with Zr0.84Y0.16O1.92 solid electrolyte. Russ J Electrochem 45(4):483–489CrossRefGoogle Scholar
  28. 28.
    Osinkin DA (2016) Long-term tests of Ni-Zr0.9Sc0.1O1.95 anode impregnated with CeO2 in H2 + H2O gas mixtures. Int J Hydrog Energy 41(39):17577–17584CrossRefGoogle Scholar
  29. 29.
    Gavrilyuk AL, Osinkin DA, Bronin DI (2017) The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy. Russ J Electrochem 53(6):575–588CrossRefGoogle Scholar
  30. 30.
    Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. Winston & Sons, WashingtonGoogle Scholar
  31. 31.
    Marshenya SN, Politov BV, Osinkin DA, Suntsov AY, Kozhevnikov VL (2018) Functional properties and electrochemical performance of dual-phase Pr0.9Y0.1BaCo2O6-δ–Ce0.8Sm0.2O1.9 composite cathodes. J Solid State Electrochem 22(6):1863–1869CrossRefGoogle Scholar
  32. 32.
    Beresnev SM, Bobrenok OF, Kuzin BL, Bogdanovich NM, Kurteeva AA, Osinkin DA, Vdovin GK, Bronin DI (2012) Single fuel cell with supported LSM cathode. Russ J Electrochem 48(10):969–975CrossRefGoogle Scholar
  33. 33.
    Cowin PI, Lan R, Petit CTG, Wang H, Tao S (2016) Conductivity and redox stability of new double perovskite oxide Sr1.6K0.4Fe1+xMo1-xO6-δ (x = 0.2, 0.4, 0.6). J Mater Sci 51(8):4115–4124CrossRefGoogle Scholar
  34. 34.
    He B, Zhao L, Song S, Liu T, Chen F, Xia C (2012) Sr2Fe1.5Mo0.5O6-δ–Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 159(5):B619–B626CrossRefGoogle Scholar
  35. 35.
    Osinkin DA, Bogdanovich NM, Gavrilyuk AL (2016) Rate determining steps of fuel oxidation over CeO2 impregnated Ni-YSZ in H2 + H2O + CO + CO2 ambient. Electrochim Acta 199:108–115CrossRefGoogle Scholar
  36. 36.
    Wang Y, Hu B, Zhu Z, Boumeester HJM, Xia C (2014) Electrical conductivity relaxation of Sr2Fe1.5Mo0.5O6-δ–Sm0.2Ce0.8O1.9 dual-phase composites. J Mater Chem A 2(1):136–143CrossRefGoogle Scholar
  37. 37.
    Osinkin DA, Beresnev SM, Bogdanovich NM (2018) Influence of Pr6O11 on oxygen electroreduction kinetics and electrochemical performance of Sr2Fe1.5Mo0.5O6-δ based cathode. J Power Sources 392:41–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Denis A. Osinkin
    • 1
    • 2
    Email author
  • S. M. Beresnev
    • 1
  • A. V. Khodimchuk
    • 1
    • 2
  • I. V. Korzun
    • 1
  • N. I. Lobachevskaya
    • 3
  • A. Yu Suntsov
    • 3
  1. 1.Institute of High-Temperature ElectrochemistryYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.Institute of Solid State ChemistryYekaterinburgRussia

Personalised recommendations