Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 591–606 | Cite as

Solid-state pseudocapacitors based on MnO2-nanorod-electrodes and plastic crystal incorporated gel polymer electrolyte: synergistic effect of Li-salt addition in electrolyte and morphology of electrodes

  • Md. Yasir Bhat
  • S. A. HashmiEmail author
Original Paper


We present a novel configuration of high-performance solid-state pseudocapacitors, fabricated with symmetric MnO2-nanorod-electrodes, prepared via chemical and hydrothermal routes, and plastic crystals-based gel polymer electrolytes (GPEs). Comparative studies are reported on capacitors employing GPEs comprising a mixture of non-ionic plastic crystal succinonitrile (SN) and organic ionic plastic crystal (OIPC) 1-ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (EMPTFSI), without and with Li-salt (LiTFSI), entrapped in a co-polymer poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The MnO2-nanorods have been characterized for their morphological/structural aspects, specific surface area, and porosity and correlated the characteristics with their capacitive performance. Clean and uniform morphology and high surface area with mesoporous character are found to be responsible factors for superior supercapacitive performance of hydrothermally derived MnO2-nanorod-electrodes as compared to chemically derived MnO2-nanorods. Lithium salt incorporation in GPE has been found to be another important factor to improve the pseudoapacitive performance of the cells due to facile intercalation/extraction of Li-ions through MnO2-electrodes. The optimum performance of the pseudocapacitor cell has been observed in terms of specific capacitance (98–101 F g−1), specific energy (~ 13.7 W h kg−1), and maximum specific power (~ 32.6 kW kg−1) as observed from charge-discharge studies, due to synergistic effect of morphology of hydrothermally derived MnO2-nanorod-electrodes and incorporation of Li-ions in GPE. The hydrothermally derived MnO2-nanorod-electrodes also exhibit high rate capability; however, it reduces significantly when Li-salt incorporated GPE is employed. The optimum cell exhibits almost stable cyclic performance up to ~ 3300 charge-discharge cycles after only ~ 17% fading in specific capacitance for initial few cycles.


MnO2-nanorods Pseudocapacitors Plastic crystals Gel polymer electrolyte Impedance analysis Cyclic voltammetry 


Funding information

One of us (MYB) is thankful to the Department of Science & Technology, New Delhi for providing fellowship under INSPIRE fellowship program. Partial financial support received from SERB (DST), New Delhi is also thankfully acknowledged.

Supplementary material

10008_2018_4168_MOESM1_ESM.docx (398 kb)
ESM 1 (DOCX 397 kb)


  1. 1.
    Beguin F, Frackowiak E (2013) Supercapacitors, materials, systems and applications. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar
  2. 2.
    Stevenson KJ (2012) The origin, development, and future of the lithium-ion battery. J Solid State Electrochem 16(6):2017–2018CrossRefGoogle Scholar
  3. 3.
    Pistoia G (ed) (2014) Lithium ion batteries, advances and applications. Elsevier, PolandGoogle Scholar
  4. 4.
    Simon P, Brousse T, Favier F (2017) Supercapacitors based on carbon or pseudocapacitive materials, Hoboken, WileyCrossRefGoogle Scholar
  5. 5.
    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206CrossRefGoogle Scholar
  6. 6.
    Hashmi SA (2014) Supercapacitor: an emerging power source. Natl Acad Sci Lett 27:27–46Google Scholar
  7. 7.
    Conway BE (1999) Electrochemical capacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New YorkGoogle Scholar
  8. 8.
    Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504CrossRefGoogle Scholar
  9. 9.
    Li Q, Zheng S, Xu Y, Xue H, Pang H (2018) Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J 333:505–518CrossRefGoogle Scholar
  10. 10.
    Kate RS, Khalate SA, Deokate RJ (2018) Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J Alloys Compd 734:89–111CrossRefGoogle Scholar
  11. 11.
    Tang N, Wang W, You H, Zhai Z, Hilario J, Zeng L, Zhang L (2018) Morphology tuning of porous CoO nanowall towards enhanced electrochemical performance as supercapacitors electrodes. Catal Today.
  12. 12.
    Jang GS, Ameen S, Akhtar MS, Shin HS (2018) Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram Int 44(1):588–595CrossRefGoogle Scholar
  13. 13.
    Barik R, Devi N, Nandi D, Siwal S, Gosh SK, Mallick K (2017) Multifunctional performance of nanocrystalline tin oxide. J Alloys Compd 732:201–207CrossRefGoogle Scholar
  14. 14.
    Arhin DD, Nuamah RA, Jain PK, Obada DO, Yaya A (2018) Nanostructured stannic oxide: synthesis and characterization for potential energy storage applications. Results Phys 9:1391–1402CrossRefGoogle Scholar
  15. 15.
    Saha S, Samanta P, Kuila T (2018) A review on the heterostructure nanomaterials for supercapacitor application. J Energy Storage 17:181–202CrossRefGoogle Scholar
  16. 16.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3(43):21380–21423CrossRefGoogle Scholar
  17. 17.
    Xie K, Li J, Lai Y, Lu W, Zhang Z, Liu Y, Zhou L, Huang H (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 13(6):657–660CrossRefGoogle Scholar
  18. 18.
    Hashmi SA, Upadhyaya HM (2002) MnO2-polypyrrole conducting polymer composite electrodes for electrochemical redox supercapacitors. Ionics 8(3-4):272–277CrossRefGoogle Scholar
  19. 19.
    Kim H, Popov BN (2003) Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J Electrochem Soc 150(3):D56–D62CrossRefGoogle Scholar
  20. 20.
    Jeong YU, Manthiram A (2002) Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J Electrochem Soc 149(11):A1419–A1422CrossRefGoogle Scholar
  21. 21.
    Toupin M, Brousse T, Bélanger D (2002) Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14(9):3946–3952CrossRefGoogle Scholar
  22. 22.
    Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190CrossRefGoogle Scholar
  23. 23.
    Reddy RN, Reddy RG (2003) Sol–gel MnO2 as an electrode material for electrochemical capacitors. J Power Sources 124(1):330–337CrossRefGoogle Scholar
  24. 24.
    Pang S-C, Anderson MA (2000) Novel electrode materials for electrochemical capacitors: part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films. J Mater Res 15(10):2096–2106CrossRefGoogle Scholar
  25. 25.
    Mardi S, Moradlou O, Moshfegh AZ (2018) Fabrication and the electrochemical activation of network-like MnO2 nanoflakes as a flexible and large-area supercapacitor electrode. J Solid State Electrochem 22(11):3507–3514CrossRefGoogle Scholar
  26. 26.
    Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223CrossRefGoogle Scholar
  27. 27.
    Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153(12):A2171–A2180CrossRefGoogle Scholar
  28. 28.
    Li Z, Liu Z, Li B, Li D, Li Q, Wang H (2014) MnO2 nanosilks self-assembled micropowders: facile one-step hydrothermal synthesis and their application as supercapacitor electrodes. J Taiwan Inst Chem Eng 45(6):2995–2999CrossRefGoogle Scholar
  29. 29.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109(43):20207–20214CrossRefGoogle Scholar
  30. 30.
    Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111(51):19141–19147CrossRefGoogle Scholar
  31. 31.
    Tsuda M, Arai H, Nemoto Y, Sakurai Y (2003) Electrode performance of sodium and lithium-type romanechite. J Electrochem Soc 150(6):A659–A664CrossRefGoogle Scholar
  32. 32.
    Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chem Soc 124(12):2880–2881CrossRefGoogle Scholar
  33. 33.
    Gao Y, Wang Z, Wan J, Zou G, Qian Y (2005) A facile route to synthesize uniform single-crystalline α-MnO2 nanowires. J Cryst Growth 279(3-4):415–419CrossRefGoogle Scholar
  34. 34.
    Liu Y, Zhang M, Zhang J, Qian Y (2006) A simple method of fabricating large-area α-MnO2 nanowires and nanorods. J Solid State Chem 179(6):1757–1761CrossRefGoogle Scholar
  35. 35.
    Sugantha M, Ramakrishnan PA, Hermann AM, Warmsingh CP, Ginley DS (2003) Nanostructured MnO2 for Li-batteries. Int J Hydrog Energy 28(6):597–600CrossRefGoogle Scholar
  36. 36.
    Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25(1-2):1–71CrossRefGoogle Scholar
  37. 37.
    Hill LI, Verbaere A, Guyomard D (2003) MnO2 (α-, β-, γ-) compounds prepared by hydrothermal-electrochemical synthesis: characterization, morphology and lithium insertion behavior. J Power Sources 119:226–231CrossRefGoogle Scholar
  38. 38.
    Strobel P, Thiery F, Darie C, Proux O, Ibarra-Palos A, Bacia M, Soupart JB (2005) Structural and electrochemical properties of new nanospherical manganese oxides for lithium batteries. J Mater Chem 15(45):4799–4808CrossRefGoogle Scholar
  39. 39.
    Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45(5):2038–2044CrossRefGoogle Scholar
  40. 40.
    Tang Y, Zheng S, Xu Y, Xiao X, Xue H, Pang H (2018) Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater 12:284–309CrossRefGoogle Scholar
  41. 41.
    Espinal L, Suib SL, Rusling JF (2004) Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2. J Am Chem Soc 126(24):7676–7682CrossRefGoogle Scholar
  42. 42.
    Xi Y, Reed C, Lee YK, Oyama ST (2005) Acetone oxidation using ozone on manganese oxide catalysts. J Phys Chem B 109(37):17587–17596CrossRefGoogle Scholar
  43. 43.
    Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem Mater 7(1):148–153CrossRefGoogle Scholar
  44. 44.
    Liao MY, Lin JM, Wang JH, Yang CT, Chou TL, Mok BH, Chong NS, Tang HY (2003) Electrochemical synthesis of α-MnO2 octahedral molcular sieve. Electrochem Commun 5(4):312–316CrossRefGoogle Scholar
  45. 45.
    Li Q, Olson JB, Penner RM (2004) Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chem Mater 16(18):3402–3405CrossRefGoogle Scholar
  46. 46.
    Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel-polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8:1702184CrossRefGoogle Scholar
  47. 47.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539CrossRefGoogle Scholar
  48. 48.
    Xu M-W, Bao S-J (2011) Nanostructured MnO2 for electrochemical capacitor. In: Carbone R (ed) Energy storage in the emerging era of smart grids. InTech Europe, Croatia, pp 251–278Google Scholar
  49. 49.
    Qunting Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027CrossRefGoogle Scholar
  50. 50.
    Zhong C, Deng Y, Hu W, Sun D, Han X, Qiao J, Zhang J (2016) Electrolytes for electrochemical supercapacitors. CRC Press, Boca RatonCrossRefGoogle Scholar
  51. 51.
    Pal P, Ghosh A (2018) Highly efficient gel polymer electrolytes for all solid-state electrochemical charge storage devices. Electrochim Acta 278:137–148CrossRefGoogle Scholar
  52. 52.
    Harankahawa N, Perera K, Vidanapathirana K (2017) Use of gel polymer electrolytes to integrate photoelectric conversion and energy storage. J Energy Storage 13:96–102CrossRefGoogle Scholar
  53. 53.
    Fan L-Z, Hu Y-S, Bhattacharyya AJ, Maier J (2007) Succinonitrile as a versatile additive for polymer electrolytes. Adv Funct Mater 17(15):2800–2807CrossRefGoogle Scholar
  54. 54.
    Suleman M, Kumar Y, Hashmi SA (2013) Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition. J Phys Chem B 117(24):7436–7443CrossRefGoogle Scholar
  55. 55.
    Singh MK, Suleman M, Kumar Y, Hashmi SA (2015) A novel configuration of electrical double layer capacitor with plastic crystal-based gel polymer electrolyte and graphene nano-platelets as electrodes: a high rate performance. Energy 80:465–473CrossRefGoogle Scholar
  56. 56.
    Sharma J, Hashmi SA (2013) Magnesium ion transport in poly (ethylene oxide)-based polymer electrolyte containing plastic-crystalline succinonitrile. J Solid State Electrochem 17(8):2283–2291CrossRefGoogle Scholar
  57. 57.
    Pandey GP, Liu T, Hancock C, Li Y, Sun XS, Li J (2016) Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. J Power Sources 328:510–519CrossRefGoogle Scholar
  58. 58.
    Alarco PJ, Lebdeh YA, Abouimrane A, Armand M (2004) The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater 3(7):476–481CrossRefGoogle Scholar
  59. 59.
    MacFarlane DR, Forsyth M (2001) Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv Mater 13(12-13):957–966CrossRefGoogle Scholar
  60. 60.
    Pringle JM (2013) Recent progress in the development and use of organic ionic plastic crystal electrolytes. Phys Chem Chem Phys 15(5):1339–1351CrossRefGoogle Scholar
  61. 61.
    Howlett PC, Ponzio F, Fang J, Lin T, Jin L, Iranipour N, Efthimiadis J (2013) Thin and flexible solid-state organic ionic plastic crystal–polymer nanofiber composite electrolytes for device applications. Phys Chem Chem Phys 15(33):13784–13789CrossRefGoogle Scholar
  62. 62.
    Wang X, Zhu H, Greene GW, Zhou Y, Masahiro Y-F, Miyachi Y, Armand M, Forsyth M, Pringle JM, Howlett PC (2017) Organic ionic plastic crystal-based composite electrolyte with surface enhanced ion transport and its use in all-solid-state lithium batteries. Adv Mater Tech 2:1700046CrossRefGoogle Scholar
  63. 63.
    Chimdi T, Gunzelmann D, Vongsvivut J, Forsyth M (2015) A study of phase behavior and conductivity of mixtures of the organic ionic plastic crystal N-methyl-N-methyl-pyrrolidinium dicyanamide with sodium dicyanamide. Solid State Ionics 272:74–83CrossRefGoogle Scholar
  64. 64.
    Chodankar NR, Dubal DP, Gund GS, Lokhande CD (2016) A symmetric MnO2/MnO2 flexible solid-state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J Energy Chem 25(3):463–471CrossRefGoogle Scholar
  65. 65.
    Lee K-T, Lee J-F, Wu N-L (2009) Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes. Electrochim Acta 54(26):6148–6153CrossRefGoogle Scholar
  66. 66.
    Long S, MacFarlane DR, Forsyth M (2004) Ionic conduction in doped Succinonitrile. Solid State Ionics 175(1-4):733–738CrossRefGoogle Scholar
  67. 67.
    Eijck LV, Best AS, Long S, Fernandez-Alonso F, MacFarlane DR, Forsyth M, Kearley GJ (2009) Localized relaxational dynamics of Succinonitrile. J Phys Chem C 113(33):15007–15013CrossRefGoogle Scholar
  68. 68.
    Ghodbane O, Pascal J-L, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1(5):1130–1139CrossRefGoogle Scholar
  69. 69.
    Xiao W, Xia H, Fuh JYH, Lu L (2009) Growth of single-crystal a-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J Power Sources 193(2):935–938CrossRefGoogle Scholar
  70. 70.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721CrossRefGoogle Scholar
  71. 71.
    Wang J-G, Kang F, Wei B (2015) Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog Mater Sci 74:51–124CrossRefGoogle Scholar
  72. 72.
    Marsh H, Rodriguez-Reinonso F (2006) Activated carbon. Elsevier Science & Technology Books, AmsterdamCrossRefGoogle Scholar
  73. 73.
    Pal P, Pahari SK, Giri AK, Bajaj HC, Panda AB (2013) Hierarchically order porous lotus shaped nano-structured MnO2 through MnCO3: chelate mediated growth and shape dependent improved catalytic activity. J Mater Chem A 1:10251–10258CrossRefGoogle Scholar
  74. 74.
    Das M, Bhattacharyya KG (2014) Oxidation of rhodamine B in aqueous medium in ambient conditions with raw and acid-activated MnO2, NiO, ZnO as catalysts. J Mol Catal A Chem 391:121–129CrossRefGoogle Scholar
  75. 75.
    Retter U, Widmann A, Siegler K, Kahlert H (2003) On the impedance of potassium nickel(II) hexacyanoferrate(II) composite electrodes-the generalization of the Randle’s model referring to inhomogeneous electrode. J Electroanal Chem 546:87–96CrossRefGoogle Scholar
  76. 76.
    Kumar Y, Pandey GP, Hashmi SA (2012) Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes. J Phys Chem C 116(50):26118–26127CrossRefGoogle Scholar
  77. 77.
    Miller JR (1998) 8th international seminar on double layer capacitor and similar energy storage devices. Deerfield Beach FloridaGoogle Scholar
  78. 78.
    Taberna P-L, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300CrossRefGoogle Scholar
  79. 79.
    Nam H-S, Kwon JS, Kim KM, Ko JM, Kim J-D (2010) Supercapacitive properties of a nanowire-structured MnO2 electrode in the gel electrolyte containing silica. Electrochim Acta 55(25):7443–7446CrossRefGoogle Scholar
  80. 80.
    Bharate BG, Hande PE, Samui AB, Kulkarni PS (2018) Ionic liquid (IL) capped MnO2 nanoparticles as an electrode material and IL as electrolyte for supercapacitor application. Renew Energy 126:437–444CrossRefGoogle Scholar
  81. 81.
    Chodankar NR, Dubal DP, Lokhande AC, Lokhande CD (2015) Ionically conducting PVA–LiClO4 gel electrolyte for high performance flexible solid state supercapacitors. J Colloid Interface Sci 460:370–376CrossRefGoogle Scholar
  82. 82.
    Obeidat A, Gharaibeh MA (2018) Electrochemical performance of MnO2 for energy storage supercapacitors in solid-state design. Inter J Renew Energy Res 8:1229–1235Google Scholar
  83. 83.
    Wu L, Li R, Guo J, Zhou C, Zhang W, Wang C, Huang Y, Li Y, Liu J (2013) Flexible solid-state symmetric supercapacitors based on MnO2 nanofilms with high rate capability and long cyclability. AIP Adv 3(8):082129CrossRefGoogle Scholar
  84. 84.
    Zhao X, Hou Y, Wang Y, Yang L, Zhu L, Cao R, Sha Z (2017) Prepared MnO2 with different crystal forms as electrode materials for supercapacitors: experimental research from hydrothermal crystallization process to electrochemical performances. RSC Adv 7(64):40286–40294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia

Personalised recommendations