Advertisement

High-temperature tungsten trioxides obtained by concentrated solar energy: physicochemical and electrochemical characterization

  • Nelly Rayón-López
  • Diana C. Martínez-Casillas
  • Margarita Miranda-Hernández
  • Heidi I. Villafán-Vidales
  • J. Luis Rodríguez-López
  • E. Carmina Menchaca-Campos
  • A. Karina Cuentas-GallegosEmail author
Original Paper
  • 83 Downloads

Abstract

High-crystalline tungsten trioxides (WO3) have been synthesized by an environmentally friendly method using concentrated solar energy. The obtained tungsten trioxides (WO3) at three different temperatures and two oxygen mole fractions used for the highest synthesis temperature were characterized by XRD, SEM, and XPS. Higher crystallinity and concentration of W5+ was observed in tungsten trioxides as the synthesis temperature increased. Nevertheless, despite of the different synthetic conditions used, a mixture of two different crystalline structures was observed in all solar-prepared tungsten trioxides: monoclinic and triclinic. Comparing oxides obtained at 1000 °C, higher concentration of W5+ and more defects were found when using lower oxygen molar fraction (WO3-1000-2). Their electrochemical performance was evaluated using cyclic voltammetry (CV) in a conventional three-electrode cell in the following three aqueous electrolytes: acidic, alkaline, and neutral media. In the acidic medium, all the tungsten trioxides showed a capacitive behavior, which was enhanced for oxides obtained at 1000 °C due to a mixed valence of W. On the other hand, in the alkaline medium, a catalytic behavior was detected with higher activity towards hydrogen evolution reaction for the oxide with more defects, higher crystallinity, and monoclinic phase, obtained at 1000 °C and a lower oxygen molar fraction in the synthesis. Finally, in the neutral medium, the oxides synthesized at 1000 °C presented a capacitive behavior whereas the oxides prepared at the lowest temperatures (600 and 800 °C) presented electrochemical processes related to a catalytic behavior for water reduction, which must correspond to their minor concentration of defects, as confirmed by XPS.

Graphical Abstract

Keywords

Tungsten trioxides WO3 High-temperature synthesis Concentrated solar energy Green synthesis 

Notes

Acknowledgments

We acknowledge the technical work of María Luisa Ramón García and Patricia Eugenia Altuzar Coello for the XRD analysis, Rogelio Morán Elvíra for the HRSEM analysis, and Dr. Mariela Bravo Sánchez from the National Laboratory Research in Nanoscience and Nanotechnology (LINAN) at IPICYT, S.L.P., Mexico, for the X-ray photoelectron spectra. We thank J.J. Quiñones-Aguilar and A. Bautista-Orozco for technical assistance in the design and installation of the solar reaction chamber. Nelly Rayón López thanks CONACyT for her PhD scholarship. We greatfully acknowledge the financial support to projects PAPIIT-UNAM: IG100217 and IA101117.

Author contribution

A.K.C.G. (group leader) designed and directed the study, which is a PhD project; E.C.M.C. contributed to the reagents/materials and analysis of the tools and is the co-director of the thesis work of N.R.L.; M.M.H. designed the electrochemical characterization and its discussion; H.I.V.V. synthesized tungsten oxide with concentrated solar energy; J.L.R.L. performed and analyzed the XPS results; N.R.L. performed all the experimentation related to the tungsten oxide characterization; D.C.M.C. and N.R.L. wrote the manuscript. All authors have given approval to the final version of the manuscript.

Funding sources

This study was financially supported by the PAPIIT-UNAM projects IG100217 and IA101117.

Compliance with ethical standards

Declaration of interest

The authors declare that they have no competing financial interest.

References

  1. 1.
    Acosta M, González D, Riech I (2009) Optical properties of tungsten oxide thin films by non-reactive sputtering. Thin Solid Films 517(18):5442–5445CrossRefGoogle Scholar
  2. 2.
    Meng L, Han H, Zhou D, Xia Y, Wang Z, Meng J (2016) Synthesis and luminescence properties of three dimensional architectures of nanostructural WO3. Optik (Stuttg) 127(6):3454–3458CrossRefGoogle Scholar
  3. 3.
    Wu WT, Liao WP, Chen JS, Wu JJ (2010) An efficient route to nanostructured tungsten oxide films with improved electrochromic properties. ChemPhysChem 11(15):3306–3312CrossRefGoogle Scholar
  4. 4.
    Darmawi S, Burkhardt S, Leichtweiss T, Weber DA, Wenzel S, Janek J, Elm MT, Klar PJ (2015) Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys Chem Chem Phys 17:5903–15911CrossRefGoogle Scholar
  5. 5.
    Yang P, Sun P, Du L, Liang Z, Xie W, Cai X, Huang L, Tan S, Mai W (2015) Quantitative analysis of charge storage process of tungsten oxide that combines pseudocapacitive and electrochromic properties. J Phys Chem C 119:6483–16489CrossRefGoogle Scholar
  6. 6.
    Nwanya AC, Jafta CJ, Ejikeme PM, Ugwuoke PE, Reddy MV, Osuji RU, Ozoemena KI, Ezema FI (2014) Electrochromic and electrochemical capacitive properties of tungsten oxide and its polyaniline nanocomposite films obtained by chemical bath deposition method. Electrochim Acta 128:218–225CrossRefGoogle Scholar
  7. 7.
    Kalhori H, Ranjbar M, Salamati H, Coey JMD (2016) Flower-like nanostructures of WO3: fabrication and characterization of their in-liquid gasochromic effect. Sensors Actuators B Chem 225:535–543CrossRefGoogle Scholar
  8. 8.
    Avellaneda CO, Bulhões LOS (2003) Photochromic properties of WO3 and WO3:X (X=Ti, Nb, Ta and Zr) thin films. Solid State Ionics 65:117–121CrossRefGoogle Scholar
  9. 9.
    Hai G, Huang J, Cao L, Jie Y, Li J, Wang X, Zhang G (2017) Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J Alloys Compd 690:239–248CrossRefGoogle Scholar
  10. 10.
    Peng H, Ma G, Sun K, Mu J, Luo M, Lei Z (2014) High-performance aqueous asymmetric supercapacitor based on carbon nanofibers network and tungsten trioxide nanorod bundles electrodes. Electrochim Acta 147:54–61CrossRefGoogle Scholar
  11. 11.
    Yoon S, Kang E, Kim JK, Lee CW, Lee J (2011) Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem Commun 47(3):1021–1023CrossRefGoogle Scholar
  12. 12.
    Wang HY, Wang CC, Cheng WY, Lu SY (2014) Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material. Carbon NY 69:287–293CrossRefGoogle Scholar
  13. 13.
    Wang F, Zhan X, Cheng Z, Wang Z, Wang Q, Xu K, Safdar M, He J (2015) Tungsten oxide @polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 11(6):749–755CrossRefGoogle Scholar
  14. 14.
    Yuksel R, Durucan C, Unalan HE (2016) Ternary nanocomposite SWNT/WO3/PANI thin film electrodes for supercapacitors. J Alloys Compd 658:183–189CrossRefGoogle Scholar
  15. 15.
    Liu Z, Li P, Dong Y, Wanb Q, Zhai F, Volinsky AA, Qu X (2017) Facile preparation of hexagonal WO3·0.33H2O/C nanostructures and its electrochemical properties for lithium-ion batteries. Appl Surf Sci 394:70–77CrossRefGoogle Scholar
  16. 16.
    Liu F, Kim JG, Lee CW, Im JS (2014) A mesoporous WO3-X/graphene composite as a high-performance Li-ion battery anode. Appl Surf Sci 316:604–609CrossRefGoogle Scholar
  17. 17.
    Sadek A, Zheng H, Breedon M, Bansal V, Bhargava SK, Latham K, Zhu J, Yu L, Hu Z, Spizzirri PG, Lodarski WW, Zadeh KK (2009) High-temperature anodized WO3 nanoplatelet films for photosensitive devices. Langmuir 25(16):9545–9551CrossRefGoogle Scholar
  18. 18.
    Mews M, Korte L, Rech B (2016) Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Sol Energy Mater Sol Cells 158:77–83CrossRefGoogle Scholar
  19. 19.
    Visa M, Bogatu C, Duta A (2015) Tungsten oxide-fly ash oxide composites in adsorption and photocatalysis. J Hazard Mater 289:244–256CrossRefGoogle Scholar
  20. 20.
    Han L, Chen C, Wei Y, Shao B, Mu X, Liu Q, Zhu P (2016) Hydrothermal deposition of tungsten oxide monohydrate films and room temperature gas sensing performance. J Alloys Compd 656:326–331CrossRefGoogle Scholar
  21. 21.
    Zeng W, Miao B, Li T, Zhang H, Hussain S, Li Y, Yu W (2015) Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder. Thin Solid Films 584:294–299CrossRefGoogle Scholar
  22. 22.
    Yu Y, Zeng W, Zhang H (2016) Hydrothermal synthesis of assembled WO3·H2O nanoflowers with enhanced gas sensing performance. Mater Lett 171:162–165CrossRefGoogle Scholar
  23. 23.
    Yu Y, Zeng W, Yu L, Wu S (2016) A novel WO3·H2O nanostructure assembled with nanorods: hydrothermal synthesis, growth and their gas sensing properties. Mater Lett 180:51–54CrossRefGoogle Scholar
  24. 24.
    Shendage SS, Patil VL, Vanalakar SA, Patil SP, Harale NS, Bhosale JL, Kim JH, Patil (2017) Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors Actuators B Chem 240:426–433CrossRefGoogle Scholar
  25. 25.
    Shen L, Du L, Tan S, Zang Z, Zhao C, Mai W (2016) Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chem Commun 52(37):6296–6299CrossRefGoogle Scholar
  26. 26.
    Chatten R, Chadwick AV, Rougier A, Lindan PJD (2005) The oxygen vacancy in crystal phases of WO3. J Phys Chem B109:3146–3156CrossRefGoogle Scholar
  27. 27.
    Huang ZF, Song J, Pan L, Zhang X, Wang L, Zou JJ (2015) Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv Mater 27(36):5309–5327CrossRefGoogle Scholar
  28. 28.
    Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Zadeh KK (2011) Nanostructured tungsten oxide—properties, synthesis, and applications. Adv Funct Mater 21(12):2175–2196CrossRefGoogle Scholar
  29. 29.
    Polaczek A, Pekala M, Obuszko Z (1994) Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. J Phys Condens Matter 6(39):7909–7919CrossRefGoogle Scholar
  30. 30.
    Chang KH, Hu CC, Huang CM, Liu YL, Chang CI (2011) Microwave-assisted hydrothermal synthesis of crystalline WO3-WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type. J Power Sources 196(4):2387–2392CrossRefGoogle Scholar
  31. 31.
    Gao L, Wang X, Xie Z, Song W, Wang L, Wu X, Qu F, Chen D, Shen G (2013) High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J Mater Chem A 1(24):7167–7173CrossRefGoogle Scholar
  32. 32.
    Ma L, Zhou X, Xu L, Xu X, Zhang L, Ye C, Luo J, Chen W (2015) Hydrothermal preparation and supercapacitive performance of flower-like WO3·H2O/reduced graphene oxide composite. Colloids Surfaces A Physicochem Eng Asp 481:609–615CrossRefGoogle Scholar
  33. 33.
    Xu J, Ding T, Wang J, Zhang J, Wang S, Chen C, Fang Y, Wu Z, Huo K, Dai J (2015) Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor. Electrochim Acta 174:728–734CrossRefGoogle Scholar
  34. 34.
    Zhu T, Chong MN, Chan ES (2014) Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. ChemSusChem 7(11):2974–2997CrossRefGoogle Scholar
  35. 35.
    Alsawafta M, Golestani YM, Phonemac T, Badilescu S, Stancovski V, Truong VV (2014) Electrochromic properties of sol-gel synthesized macroporous tungsten oxide films doped with gold nanoparticles. J Electrochem Soc 161(5):H276–H283CrossRefGoogle Scholar
  36. 36.
    Tsuchiya H, Macak JM, Sieber I, Taveira L, Ghicov A, Sirotna K, Schmuki P (2005) Self-organized porous WO3 formed in NaF electrolytes. Electrochem Commun 7(3):295–298CrossRefGoogle Scholar
  37. 37.
    Hahn R, Macak JM, Schmuki P (2007) Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem Commun 9(5):947–952CrossRefGoogle Scholar
  38. 38.
    Huang CC, Xing W, Zhuo SP (2009) Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation. Scr Mater 61(10):985–987CrossRefGoogle Scholar
  39. 39.
    Aravinth S, Sankar B, Chakravarthi SR, Sarathi R (2011) Generation and characterization of nano tungsten oxide particles by wire explosion process. Mater Charact 62(2):248–255CrossRefGoogle Scholar
  40. 40.
    Supothina S, Rattanakam R, Suwan M (2013) Effect of precursor morphology on the hydrothermal synthesis of nanostructured potassium tungsten oxide. Microelectron Eng 108:182–186CrossRefGoogle Scholar
  41. 41.
    Zeng W, Li Y, Miao B, Pan K (2014) Hydrothermal synthesis and gas sensing properties of WO3H2O with different morphologies. Phys E Low-Dimensional Syst Nanostructures 56:183–188CrossRefGoogle Scholar
  42. 42.
    Fernández-Domene RM, Sánchez-Tovar R, Lucas-Granados B, Roselló-Márquez G, García-Antón J (2017) A simple method to fabricate high-performance nanostructured WO3 photocatalysts with adjusted morphology in the presence of complexing agents. Mater Des 116:160–170CrossRefGoogle Scholar
  43. 43.
    Gerand B, Nowogrocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29(3):429–434CrossRefGoogle Scholar
  44. 44.
    Mikklós IS, Mandarász J, György P, Király P, Tárkányi G, Saukko S, Mizsei J, Tótth AL, Szabó A, Varga-Josepovits K (2008) Stability and controlled composition of hexagonal WO3. Chem Mater 20:4116–4125CrossRefGoogle Scholar
  45. 45.
    Villafán Vidales HI, Jiménez-González A, Bautista-Orozco A, Arancibia-Bulnes CA, Estrada CA (2015) Solar production of WO3: a green approach, green process. Synth 4:167–177Google Scholar
  46. 46.
    Liu F, Chen X, Xia Q, Tian L, Chen X (2015) Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv 5(94):77423–77428CrossRefGoogle Scholar
  47. 47.
    Li Z, Zhang Z, Kay BD, Dohnálek Z (2011) Polymerization of formaldehyde and acetaldehyde on ordered (WO3)3films on Pt(111). J Phys Chem C 115(19):9692–9700CrossRefGoogle Scholar
  48. 48.
    Mozalev A, Khatko V, Bittencourt C, Hassel AW, Gorokh G, Llobet E, Correig X (2008) Nanostructured columnlike tungsten oxide film by anodizing Al/W/Ti layers on Si. Chem Mater 20(20):6482–6493CrossRefGoogle Scholar
  49. 49.
    Calvillo L, Valero-Vidal C, Agnoli S, Sezen H, Rüdiger C, Kunze-Liebha J, Granozzi G (2016) Combined photoemission spectroscopy and electrochemical study of a mixture of (oxy)carbides as potential innovative supports and electrocatalysts. ACS Appl Mater Interfaces 8(30):19418–19427CrossRefGoogle Scholar
  50. 50.
    Xie FY, Gong L, Liu X, Tao YT, Zhang WH, Chen SH, Meng H, Chen J (2012) XPS studies on surface reduction of tungsten oxide nanowire film by Ar bombardment. J Electron Spectros Relat Phenomena 185(3-4):112–118CrossRefGoogle Scholar
  51. 51.
    Vasilopoulou M, Soultati A, Georgiadou DG, Stergiopoulos T, Palilis LC, Kennou S, Stathopoulos SG, Davazoglou D, Argitis P (2014) Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. J Mater Chem A 2(6):1738–1749CrossRefGoogle Scholar
  52. 52.
    Rahimnejad S, He JH, Chen W, Wu K, Xu GQ (2014) Tuning the electronic and structural properties of WO3 nanocrystals by varying transition metal tungstate precursors. RSC Adv 4(107):62423–62429CrossRefGoogle Scholar
  53. 53.
    Li Y, Wang C, Zheng H, Wan F, Yu F, Zhang X, Liu Y (2017) Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Appl Surf Sci 391:654–661CrossRefGoogle Scholar
  54. 54.
    Ganesan R, Gedanken A (2008) Synthesis of WO3 nanoparticles using a biopolymer as a template for electrocatalytic hydrogen evolution. Nanotechnology 19:1–5Google Scholar
  55. 55.
    Frackowiak E, Abbas Q, Béguin F (2013) Carbon/carbon supercapacitors. J Energy Chem 22(2):226–240CrossRefGoogle Scholar
  56. 56.
    Jo C, Hwang I, Lee J, Lee CW, Yoon S (2011) Investigation of pseudocapacitive charge-storage behavior in highly conductive ordered mesoporous tungsten oxide electrodes. J Phys Chem C 115(23):11880–11886CrossRefGoogle Scholar
  57. 57.
    Chen GZ (2013) Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog Nat Sci Mater Int 23(3):245–255CrossRefGoogle Scholar
  58. 58.
    Regragui M, Addou M, Outzourhit A, Bernéde J, Idrissi EE, Benseddik E, Kachouane A (2000) Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films. Thin Solid Films 358(1-2):40–45CrossRefGoogle Scholar
  59. 59.
    Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123(43):10639–10649CrossRefGoogle Scholar
  60. 60.
    Lee S, Lee YW, Kwak DH, Kim MC, Lee JY, Kim DM, Park KW (2015) Improved pseudocapacitive performance of well-defined WO3-x nanoplates. Ceram Int 41(3):4989–4995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nelly Rayón-López
    • 1
    • 2
  • Diana C. Martínez-Casillas
    • 1
  • Margarita Miranda-Hernández
    • 1
  • Heidi I. Villafán-Vidales
    • 1
  • J. Luis Rodríguez-López
    • 3
  • E. Carmina Menchaca-Campos
    • 2
  • A. Karina Cuentas-Gallegos
    • 1
    return OK on get
  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico
  2. 2.Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp)Universidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Advanced Materials DepartmentInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico

Personalised recommendations