Electrochemical properties and first-principle analysisof Na x [M y Mn1−y ]O2 (M = Fe, Ni) cathode

  • Debasis Nayak
  • Tanmay Sarkar
  • N. Vijay Prakash Chaudhary
  • Mridula Dixit Bharadwaj
  • Sudipto Ghosh
  • Venimadhav Adyam
Original Paper
  • 158 Downloads

Abstract

Sodium-ion batteries are the commercially and environmentally viable next-generation candidates for automobiles. Structural and electrochemical aspects are greater concerns towards the development of a stable cathode material. Selecting transition metals and their composition greatly influences charge order, superstructures, and different voltage plateaus. This, in turn, influences transport properties and cyclic performance. This article aims to study the electrochemical performance, diffusivity, and structural stability of Na x [M y Mn1−y ]O2 (M = Fe, Ni) as cathode. Both experimental and DFT-based calculations apprehend the voltage plateaus due to redox reactions. The rate of cycling and the initial structure also influence the cycle life. The diffusion coefficient of P2-type Na0.67Fe0.5Mn0.5O2 for Mn3+/4+ redox reactions is more than that of the O3-type NaFe0.5Mn0.5O2 while it is less for Fe3+/4+ redox reactions, because of structural transition. The diffusion coefficient of NaNi0.5Mn0.5O2 is less for Ni2+/4+ redox reaction and is up to the order of 10−11 cm2 s−1.

Supplementary material

10008_2017_3850_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1113 kb)

References

  1. 1.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682.  https://doi.org/10.1021/cr500192f CrossRefGoogle Scholar
  2. 2.
    Jin J, Shi Z, Wang C (2014) Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries. Electrochim Acta 141:302–310.  https://doi.org/10.1016/j.electacta.2014.07.079 CrossRefGoogle Scholar
  3. 3.
    Gotoh K, Ishikawa T, Shimadzu S, Yabuuchi N, Komaba S, Takeda K, Goto A, Deguchi K, Ohki S, Hashi K, Shimizu T, Ishida H (2013) NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J Power Sources 225:137–140.  https://doi.org/10.1016/j.jpowsour.2012.10.025 CrossRefGoogle Scholar
  4. 4.
    Nam D, Hong K, Lim S et al (2014) Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J Phys Chem C 118(35):20086–20093.  https://doi.org/10.1021/jp504055j CrossRefGoogle Scholar
  5. 5.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884.  https://doi.org/10.1039/c2ee02781j CrossRefGoogle Scholar
  6. 6.
    Pol VG, Lee E, Zhou D, Dogan F, Calderon-Moreno JM, Johnson CS (2014) Spherical carbon as a new high-rate anode for sodium-ion batteries. Electrochim Acta 127:61–67.  https://doi.org/10.1016/j.electacta.2014.01.132 CrossRefGoogle Scholar
  7. 7.
    Song H, Li N, Cui H, Wang C (2014) Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy 4:81–87.  https://doi.org/10.1016/j.nanoen.2013.12.017 CrossRefGoogle Scholar
  8. 8.
    Oh S-M, Myung S-T, Hwang J-Y et al (2014) High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem Mater 26:6165–6171CrossRefGoogle Scholar
  9. 9.
    Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki J (2013) Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim Acta 101:59–65.  https://doi.org/10.1016/j.electacta.2012.11.038 CrossRefGoogle Scholar
  10. 10.
    Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338.  https://doi.org/10.1039/c3ee40847g CrossRefGoogle Scholar
  11. 11.
    Bhide A, Hofmann J, Dürr AK et al (2014) Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2. Phys Chem Chem Phys: PCCP 16(5):1987–1998.  https://doi.org/10.1039/C3CP53077A CrossRefGoogle Scholar
  12. 12.
    Datta MK, Kuruba R, Jampani PH, Chung SJ, Saha P, Epur R, Kadakia K, Patel P, Gattu B, Manivannan A, Kumta PN (2014) Electrochemical properties of a new nanocrystalline NaMn2O4 cathode for rechargeable sodium ion batteries. Mater Sci Eng B 188:1–7.  https://doi.org/10.1016/j.mseb.2014.05.007 CrossRefGoogle Scholar
  13. 13.
    Ding JJ, Zhou YN, Sun Q, Yu XQ, Yang XQ, Fu ZW (2013) Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim Acta 87:388–393.  https://doi.org/10.1016/j.electacta.2012.09.058 CrossRefGoogle Scholar
  14. 14.
    Ruffo R, Fathi R, Kim DJ, Jung YH, Mari CM, Kim DK (2013) Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim Acta 108:575–582.  https://doi.org/10.1016/j.electacta.2013.07.009 CrossRefGoogle Scholar
  15. 15.
    Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13(7):3093–3100.  https://doi.org/10.1021/nl400998t CrossRefGoogle Scholar
  16. 16.
    Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I (2012) Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg Chem 51(11):6211–6220.  https://doi.org/10.1021/ic300357d CrossRefGoogle Scholar
  17. 17.
    Valvo M, Lindgren F, Lafont U, Björefors F, Edström K (2014) Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide. J Power Sources 245:967–978.  https://doi.org/10.1016/j.jpowsour.2013.06.159 CrossRefGoogle Scholar
  18. 18.
    Clément RJ, Bruce PG, Grey CP (2015) Review—manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J Electrochem Soc 162(14):A2589–A2604.  https://doi.org/10.1149/2.0201514jes CrossRefGoogle Scholar
  19. 19.
    Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Phys B+C 99(1-4):81–85.  https://doi.org/10.1016/0378-4363(80)90214-4 CrossRefGoogle Scholar
  20. 20.
    Li X, Ma X, Su D, Liu L, Chisnell R, Ong SP, Chen H, Toumar A, Idrobo JC, Lei Y, Bai J, Wang F, Lynn JW, Lee YS, Ceder G (2014) Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. Nat Mater 13(6):586–592.  https://doi.org/10.1038/nmat3964 CrossRefGoogle Scholar
  21. 21.
    Su J, Pei Y, Yang Z, Wang X (2015) First-principles investigation on crystal, electronic structures and diffusion barriers of NaNi1/3Co1/3Mn1/3O2 for advanced rechargeable Na-ion batteries. Comput Mater Sci 98:304–310.  https://doi.org/10.1016/j.commatsci.2014.11.021 CrossRefGoogle Scholar
  22. 22.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517.  https://doi.org/10.1038/nmat3309 CrossRefGoogle Scholar
  23. 23.
    Singh G, López del Amo JM, Galceran M, Pérez-Villar S, Rojo T (2015) Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J Mater Chem A 3(13):6954–6961.  https://doi.org/10.1039/C4TA06360K CrossRefGoogle Scholar
  24. 24.
    Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys: PCCP 15(9):3304–3312.  https://doi.org/10.1039/c2cp44467d CrossRefGoogle Scholar
  25. 25.
    Yuan D, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y (2014) P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochim Acta 116:300–305.  https://doi.org/10.1016/j.electacta.2013.10.211 CrossRefGoogle Scholar
  26. 26.
    Buchholz D, Chagas LG, Winter M, Passerini S (2013) P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries. Electrochim Acta 110:208–213.  https://doi.org/10.1016/j.electacta.2013.02.109 CrossRefGoogle Scholar
  27. 27.
    Zhao W, Kirie H, Tanaka A, Unno M, Yamamoto S, Noguchi H (2014) Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Mater Lett 135:131–134.  https://doi.org/10.1016/j.matlet.2014.07.153 CrossRefGoogle Scholar
  28. 28.
    Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113(8):6552–6591.  https://doi.org/10.1021/cr3001862 CrossRefGoogle Scholar
  29. 29.
    Shibata T, Fukuzumi Y, Kobayashi W, Moritomo Y (2015) Fast discharge process of layered cobalt oxides due to high Na+ diffusion. Sci Rep 5(1):9006.  https://doi.org/10.1038/srep09006 CrossRefGoogle Scholar
  30. 30.
    Xia H, Lu L, Meng YS, Ceder G (2007) Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J Electrochem Soc 154(4):A337.  https://doi.org/10.1149/1.2509021 CrossRefGoogle Scholar
  31. 31.
    Rai AK, Anh LT, Gim J, Mathew V, Kim J (2014) Electrochemical properties of NaxCoO2 (x~0.71) cathode for rechargeable sodium-ion batteries. Ceram Int 40(1):2411–2417.  https://doi.org/10.1016/j.ceramint.2013.08.013 CrossRefGoogle Scholar
  32. 32.
    Kim D, Lee E, Slater M, Lu W, Rood S, Johnson CS (2012) Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem Commun 18:66–69.  https://doi.org/10.1016/j.elecom.2012.02.020 CrossRefGoogle Scholar
  33. 33.
    Huang W, Zhou J, Li B, Ma J, Tao S, Xia D, Chu W, Wu Z (2014) Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries. Sci Rep 4:4188.  https://doi.org/10.1038/srep04188 CrossRefGoogle Scholar
  34. 34.
    Luo C, Langrock A, Fan X, Liang Y, Wang C (2017) P2-type transition metal oxides for high performance Na-ion battery cathodes. J Mater Chem A 5(34):18214–18220.  https://doi.org/10.1039/C7TA04515H CrossRefGoogle Scholar
  35. 35.
    Dixit M, Markovsky B, Schipper F et al (2017) Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.7b06122
  36. 36.
    Kalluri S, Hau Seng K, Kong Pang W et al (2014) Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 6(12):8953–8958.  https://doi.org/10.1021/am502343s CrossRefGoogle Scholar
  37. 37.
    Owen J, Hector A (2014) Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344(6191):1451–1452.  https://doi.org/10.1126/science.1255819 CrossRefGoogle Scholar
  38. 38.
    Deng C, Zhang S, Wu Y (2014) Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries. Nano 7:487–491Google Scholar
  39. 39.
    Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21(20):3859–3867.  https://doi.org/10.1002/adfm.201100854 CrossRefGoogle Scholar
  40. 40.
    Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680.  https://doi.org/10.1039/c1ee01782a CrossRefGoogle Scholar
  41. 41.
    Song W, Ji X, Wu Z, Yang Y, Zhou Z, Li F, Chen Q, Banks CE (2014) Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J Power Sources 256:258–263.  https://doi.org/10.1016/j.jpowsour.2014.01.025 CrossRefGoogle Scholar
  42. 42.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985.  https://doi.org/10.1063/1.472933 CrossRefGoogle Scholar
  44. 44.
    Loftager S, García-Lastra JM, Vegge T (2016) A density functional theory study of the ionic and electronic transport mechanisms in LiFeBO3 battery electrodes. J Phys Chem C 120(33):18355–18364.  https://doi.org/10.1021/acs.jpcc.6b03456 CrossRefGoogle Scholar
  45. 45.
    Xiao P, Song J, Wang L, Goodenough JB, Henkelman G (2015) Theoretical study of the structural evolution of a Na2FeMn(CN)6 cathode upon Na intercalation. Chem Mater 27(10):3763–3768.  https://doi.org/10.1021/acs.chemmater.5b01132 CrossRefGoogle Scholar
  46. 46.
    Sarkar T, Bharadwaj MD, Waghmare UV, Kumar P (2015) Mechanism of charge transfer in olivine-type LiFeSiO4 and LiFe0.5M0.5SiO4 (M = Mg or Al) cathode materials: first-principles analysis. J Phys Chem C 119(17):9125–9133.  https://doi.org/10.1021/acs.jpcc.5b01692 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Center for Study of Science, Technology and PolicyBangaloreIndia
  3. 3.Central Electro Chemical Research InstituteChennaiIndia
  4. 4.Cryogenic Engineering CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations