Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell

Original Paper

Abstract

Electrochemical noise analysis (ENA) technique has been performed for the diagnosis of proton exchange membrane fuel cell (PEMFC) under various operating conditions. The interest of electrochemical noise (EN) measurements relates with its non-invasive character and the possibility of online diagnosis of commercial fuel cells without interruption of the system. A new approach for the interpretation of electrochemical noise (EN) measurements has been proposed. This approach is based on internal intermittence of the recorded fluctuating signal (cell voltage). Namely, statistical descriptors in time domain (standard deviation, skewness, flatness), calculated for small time windows (short-time analysis), are rather unstable. This phenomenon can be called the internal intermittence of EN. Our experiments show that the level of internal intermittence is very sensitive to water management and increases drastically when a fuel cell meets either flooding or drying conditions. This conclusion has been confirmed using three statistical moments (standard deviation, skewness, and flatness), four different relative humidities, and three operation points (OCV, 2.5 A, 8 A). The level of internal intermittence can be detected easily by different ways and can be used for the characterization of possible faults of water management in practical applications as commercial fuel cell stacks. From a practical point of view, the measurement of the level of the internal intermittence is rather simple and avoids a time drift. In our knowledge, the internal intermittence of EN has not been used previously for studies of fuel cells. It will be interesting to apply this approach for other electrochemical systems and processes.

Keywords

Electrochemical noise Short-time analysis Internal intermittence Water management Diagnostic PEMFC 

Notes

Acknowledgements

This work was supported by the Algeria Government program (PNE scholarship of University A. Mira of Bejaia) and French Government program “Investissements d’Avenir” (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

References

  1. 1.
    Li H, Li H, Tang Y, Wang Z, Shi Z, Wu S et al (2008) A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources 178(1):103–117.  https://doi.org/10.1016/j.jpowsour.2007.12.068 CrossRefGoogle Scholar
  2. 2.
    Ji M, Wei Z (2009) A review of water management in polymer electrolyte membrane fuel cells. Energies 2(4):1057–1106.  https://doi.org/10.3390/en20401057 CrossRefGoogle Scholar
  3. 3.
    Rodríguez CMB, Paleta MAR, Marquez JAR, Pachuca BA, de la Vega JRG (2009) Effect of a rigid gas diffusion media applied as distributor of reagents in a PEMFC in operation, part I: dry gases. Int J Electrochem Sci 4:1754–1769Google Scholar
  4. 4.
    Pérez-Page M, Pérez-Herranz V (2011) Effect of the operation and humidification temperatures on the performance of a PEM fuel cell stack on dead-end mode. Int J Electrochem Sci 6:492–505Google Scholar
  5. 5.
    Denisov E (2011) PEM fuel cell electrical fluctuations and noises and their diagnostic properties. Thesis, PoitiersGoogle Scholar
  6. 6.
    Fecarotti C, Andrews J, Chen R (2016) A Petri net approach for performance modelling of polymer electrolyte membrane fuel cell systems. Int J Hydrog Energy 41(28):12242–122260.  https://doi.org/10.1016/j.ijhydene.2016.05.138 CrossRefGoogle Scholar
  7. 7.
    Si C, Lu G, Wang XD, Lee DJ (2016) Gas diffusion layer properties on the performance of proton exchange membrane fuel cell: pc-s relationship with K-function. Int J Hydrog Energy 4:21827–21837CrossRefGoogle Scholar
  8. 8.
    Jheng LC, Chang WJY, Hsu SLC, Cheng PY (2016) Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J Power Sources 323:57–66.  https://doi.org/10.1016/j.jpowsour.2016.05.043 CrossRefGoogle Scholar
  9. 9.
    Wang W, Chen S, Li J, Wang W (2015) Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell. Int J Hydrog Energy 40(13):4649–4658.  https://doi.org/10.1016/j.ijhydene.2015.02.027 CrossRefGoogle Scholar
  10. 10.
    Nigmatullin RR, Martemianov S, Evdokimov YK, Denisov E, Thomas A, Adiutantov N (2016) New approach for PEMFC diagnostics based on quantitative description of quasi-periodic oscillations. Int J Hydrog Energy 41(29):12582–12590.  https://doi.org/10.1016/j.ijhydene.2016.06.011 CrossRefGoogle Scholar
  11. 11.
    Khanungkhid P, Piumsomboon P (2014) 200W PEM fuel cell stack with online model-based monitoring system. Eng J 18:14–26CrossRefGoogle Scholar
  12. 12.
    Khazaee I, Ghazikhani M, Mohammadiun M (2012) Experimental and thermodynamic investigation of a triangular channel geometry PEM fuel cell at different operating conditions. Sci Iranica 19(3):585–593.  https://doi.org/10.1016/j.scient.2011.11.039 CrossRefGoogle Scholar
  13. 13.
    Martemianov S, Ilie VR, Coutanceau C (2014) Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly. J Solid State Electrochem 18(5):1261–1269.  https://doi.org/10.1007/s10008-013-2273-2 CrossRefGoogle Scholar
  14. 14.
    Fang SY, Teoh LG, Huang RH, Chao WK, Lin TJ, Yang KC, Hsueh KL, Shieu FS (2014) Effect of adding zinc oxide particles to the anode catalyst layer on the performance of a proton-exchange membrane fuel cell. J Electron Mater 43(9):3601–3610.  https://doi.org/10.1007/s11664-014-3246-7 CrossRefGoogle Scholar
  15. 15.
    Thomas A, Maranzana G, Didierjean S, Dillet J, Lottin O (2013) Measurements of electrode temperatures, heat and water fluxes in PEMFCs: conclusions about transfer mechanisms. J Electrochem Soc 160:F191–F204CrossRefGoogle Scholar
  16. 16.
    Banerjee R, Howe D, Mejia V, Kandlikar SG (2014) Experimental validation of two-phase pressure drop multiplier as a diagnostic tool for characterizing PEM fuel cell performance. Int J Hydrog Energy 39(31):17791–17801.  https://doi.org/10.1016/j.ijhydene.2014.08.118 CrossRefGoogle Scholar
  17. 17.
    Dotelli G, Ferrero R, Stampino PG, Latorrata S, Toscani S (2016) Combining electrical and pressure measurements for early flooding detection in a PEM fuel cell. IEEE Trans Instrum Meas 65(5):1007–1014.  https://doi.org/10.1109/TIM.2015.2490999 CrossRefGoogle Scholar
  18. 18.
    Dotelli G, Ferrero R, Stampino PG, Latorrata S, Toscani S (2014) Diagnosis of PEM fuel cell drying and flooding based on power converter ripple. IEEE Trans Instrum Meas 63(10):2341–2348.  https://doi.org/10.1109/TIM.2014.2318371 CrossRefGoogle Scholar
  19. 19.
    St-Pierre J (2007) PEMFC in situ liquid-water-content monitoring status. J Electrochem Soc 154(7):B724–B731.  https://doi.org/10.1149/1.2737542 CrossRefGoogle Scholar
  20. 20.
    Hauer KH, Potthast R, Wüster T, Stolten D (2005) Magnetotomography—a new method for analysing fuel cell performance and quality. J Power Sources 143(1-2):67–74.  https://doi.org/10.1016/j.jpowsour.2004.11.054 CrossRefGoogle Scholar
  21. 21.
    Rubio MA, Urquia A, Dormido S (2007) Diagnosis of PEM fuel cells through current interruption. J Power Sources 171(2):670–677.  https://doi.org/10.1016/j.jpowsour.2007.06.072 CrossRefGoogle Scholar
  22. 22.
    Ito K, Ashikaga K, Masuda H, Oshima T, Kakimoto Y, Sasaki K (2008) Estimation of flooding in PEMFC gas diffusion layer by differential pressure measurement. J Power Sources 175(2):732–738.  https://doi.org/10.1016/j.jpowsour.2007.10.019 CrossRefGoogle Scholar
  23. 23.
    Barbir F, Gorgun H, Wang X (2005) Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. J Power Sources 141(1):96–101.  https://doi.org/10.1016/j.jpowsour.2004.08.055 CrossRefGoogle Scholar
  24. 24.
    Legros B, Thivel PX, Bultel Y, Nogueira RP (2011) First results on PEMFC diagnosis by electrochemical noise. Electrochem Commun 13(12):1514–1516.  https://doi.org/10.1016/j.elecom.2011.10.007 CrossRefGoogle Scholar
  25. 25.
    Miramontes JA, Nieves-Mendoza D, Castillo-González E, Almeraya-Calderón F (2014) Electrochemical noise analysis of nickel based superalloys in acid solutions. Int J Electrochem Sci 9:523–523Google Scholar
  26. 26.
    Vorotyntsev MA, Martem’Yanov SA, Grafov MB (1984) Temporal correlation of current pulsations at one or several electrodes: a technique to study hydrodynamic fluctuation characteristics of a turbulent flow. J Electroanal Chem Interfacial Electrochem 179(1-2):1–23.  https://doi.org/10.1016/S0022-0728(84)80270-3 CrossRefGoogle Scholar
  27. 27.
    Adolphe X, Danaila L, Martemianov S (2007) On the small-scale statistics of turbulent mixing in electrochemical systems. J Electroanal Chem 600(1):119–130.  https://doi.org/10.1016/j.jelechem.2006.04.023 CrossRefGoogle Scholar
  28. 28.
    Martemianov S, Danaila L (2003) On the study of electrochemical turbulent noise in a stirred vessel. Fluct Noise Letters 3(04):L463–L471.  https://doi.org/10.1142/S0219477503001555 CrossRefGoogle Scholar
  29. 29.
    Gabrielli C, Huet F, Keddam M (1985) Characterization of electrolytic bubble evolution by spectral analysis. Application to a corroding electrode. J Appl Electrochem 15(4):503–508.  https://doi.org/10.1007/BF01059291 CrossRefGoogle Scholar
  30. 30.
    Hodgson DR (1996) Application of electrochemical noise and in situ microscopy to the study of bubble evolution on chlorine evolving anodes. Electrochim Acta 41(4):605–609.  https://doi.org/10.1016/0013-4686(95)00347-9 CrossRefGoogle Scholar
  31. 31.
    Searson PC, Dawson JL (1988) Analysis of electrochemical noise generated by corroding electrodes under open-circuit conditions. J Electrochem Soc 135(8):1908–1915.  https://doi.org/10.1149/1.2096177 CrossRefGoogle Scholar
  32. 32.
    Mansfeld F, Lee CC (1997) The frequency dependence of the noise resistance for polymer-coated metals. J Electrochem Soc 144(6):2068–2071.  https://doi.org/10.1149/1.1837743 CrossRefGoogle Scholar
  33. 33.
    Bertocci U, Frydman J, Gabrielli C, Huet F, Keddam M (1998) Analysis of electrochemical noise by power spectral density applied to corrosion studies maximum entropy method or fast Fourier transform. J Electrochem Soc 145(8):2780–2786.  https://doi.org/10.1149/1.1838714 CrossRefGoogle Scholar
  34. 34.
    Gabrielli C, Keddam M (1992) Review of applications of impedance and noise analysis to uniform and localized corrosion. Corrosion 48(10):794–811.  https://doi.org/10.5006/1.3315878 CrossRefGoogle Scholar
  35. 35.
    Gabrielli C, Huet F, Keddam M (1986) Investigation of electrochemical processes by an electrochemical noise analysis. Theoretical and experimental aspects in potentiostatic regime. Electrochim Acta 31(8):1025–1039.  https://doi.org/10.1016/0013-4686(86)80018-4 CrossRefGoogle Scholar
  36. 36.
    Denisov ES, Evdokimov YK, Martemianov S, Thomas A, Adiutantov N (2016) Electrochemical noise as a diagnostic tool for PEMFC. Fuel Cell 17:225–237CrossRefGoogle Scholar
  37. 37.
    Huet F, Nogueira RP, Lailler P, Torcheux L (2006) Investigation of the high-frequency resistance of a lead-acid battery. J Power Sources 158(2):1012–1018.  https://doi.org/10.1016/j.jpowsour.2005.11.026 CrossRefGoogle Scholar
  38. 38.
    Baert DHJ, Vervaet AAK (2003) Small bandwidth measurement of the noise voltage of batteries. J Power Sources 114(2):357–365.  https://doi.org/10.1016/S0378-7753(02)00599-2 CrossRefGoogle Scholar
  39. 39.
    Martemianov S, Adiutantov N, Evdokimov YK, Madier L, Maillard F, Thomas A (2015) New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J Solid State Electrochem 19(9):2803–2810.  https://doi.org/10.1007/s10008-015-2855-2 CrossRefGoogle Scholar
  40. 40.
    Martemianov S, Maillard F, Thomas A, Lagonotte P, Madier L (2016) Noise diagnosis of commercial Li-ion batteries using high-order moments. Russ J Electrochem 52(12):1122–1130.  https://doi.org/10.1134/S1023193516120089 CrossRefGoogle Scholar
  41. 41.
    Greisiger H, Schauer T (2000) On the interpretation of the electrochemical noise data for coatings. Prog Org Coat 39(1):31–36.  https://doi.org/10.1016/S0300-9440(00)00096-5 CrossRefGoogle Scholar
  42. 42.
    Xiao H, Mansfeld F (1994) Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis. J Electrochem Soc 141(9):2332–2337.  https://doi.org/10.1149/1.2055121 CrossRefGoogle Scholar
  43. 43.
    Rubio MA, Bethune K, Urquia A, St-Pierre J (2016) Proton exchange membrane fuel cell failure mode early diagnosis with wavelet analysis of electrochemical noise. Int J Hydrog Energy 41(33):14991–15001.  https://doi.org/10.1016/j.ijhydene.2016.05.292 CrossRefGoogle Scholar
  44. 44.
    Maizia R, Dib A, Thomas A, Martemianov S (2017) Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise. J Power Sources 342:553–561.  https://doi.org/10.1016/j.jpowsour.2016.12.053 CrossRefGoogle Scholar
  45. 45.
    Bahrami MJ, Shahidi M, Hosseini SMA (2014) Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part I: neutral and acidic solutions. Electrochim Acta 148:127–144.  https://doi.org/10.1016/j.electacta.2014.10.031 CrossRefGoogle Scholar
  46. 46.
    Aballe A, Bethencourt M, Botana FJ, Marcos M (1999) Using wavelets transform in the analysis of electrochemical noise data. Electrochim Acta 44(26):4805–4816.  https://doi.org/10.1016/S0013-4686(99)00222-4 CrossRefGoogle Scholar
  47. 47.
    Maillard F (2015) Méthodologie de diagnostic des batteries Li-ion par la mesure des bruits électrochimiques. Thesis; Poitiers, FranceGoogle Scholar
  48. 48.
    Shahidi M, Jafari AH, Hosseini SMA (2012) Comparison of symmetrical and asymmetrical cells by statistical and wavelet analysis of electrochemical noise data. Corrosion 68(11):1003–1013.  https://doi.org/10.5006/0626 CrossRefGoogle Scholar
  49. 49.
    Mansfeld F, Sun Z, Hsu CH (2006) Electrochemical noise analysis (ENA) for active and passive systems in chloride media. Electrochim Acta 46:3651–3664CrossRefGoogle Scholar
  50. 50.
    Cottis RA, Al-Awadhi MAA, Al-Mazeedi H, Turgoose S (2001) Measures for the detection of localized corrosion with electrochemical noise. Electrochim Acta 46(24-25):3665–3674.  https://doi.org/10.1016/S0013-4686(01)00645-4 CrossRefGoogle Scholar
  51. 51.
    Xia DH, Behnamian Y (2015) Electrochemical noise: a review of experimental setup, instrumentation and DC removal. Russ J Electrochem 51(7):593–601.  https://doi.org/10.1134/S1023193515070071 CrossRefGoogle Scholar
  52. 52.
    Homborg AM, Tinga T, Zhang X, van Westing EPM, Oonincx PJ, Ferrari GM, de Wit JHW, Mol JMC (2013) Transient analysis through Hilbert spectra of electrochemical noise signals for the identification of localized corrosion of stainless steel. Electrochim Acta 104:84–93.  https://doi.org/10.1016/j.electacta.2013.04.085 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratoire d’Electrochimie, Corrosion et de Valorisation Energétique (LECVE), Département de Génie des ProcédésUniversité A. MiraBejaiaAlgeria
  2. 2.Université de Poitiers-CNRS-ENSMA, UPR 3346Institut PprimePoitiers Cedex 9France

Personalised recommendations