Skip to main content
Log in

Oxygen redox processes in PEGDME-based electrolytes for the Na-air battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We present the characterization by the rotating-disc-electrode (RDE) and cyclic-voltammetry (CV) methods of oxygen-reduction/oxygen-evolution (ORR/OER) processes in the Na-air battery containing fresh and aged polyethylene glycol dimethyl ether 500 (PEGDME500)-based electrolyte. It was found that the time of storage of this solvent affects the oxidation overpotentials of the reduction products. It is suggested that the reason for the PEGDME500 change originates from the synthesis process, in which the sodium alcoholate molecule can remain in the solvent. Insertion of metallic sodium prevents aging of PEGDME500. The results are compared with a tetraethylene glycol dimethyl ether (TEGDME)-based electrolyte. It was shown that the voltammogram of the TEGDME-based electrolyte is similar to that of the fresh PEGDME500, but with the opposite ratio of NaO2-to-Na2O2 oxidation currents. This indicates that Na2O2 is the main reduction product in TEGDME, and we suggest that in fresh PEGDME500, Na2O2 is formed by the chemical disproportionation of the dissolved NaO2 in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Review of International Policies for Vehicle Fuel Efficiency (2008) International Energy Agency. http://www.iea.org/publications/freepublications/publication/vehicle_fuel.pdf. Accessed 6 Aug 2017

  2. World Energy Outlook (2007) International Energy Agency. http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/WEO_2007.pdf. Accessed 6 Aug 2017

  3. Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—opportunities, limitations and perspective. J Power Sources 196(3):886–893. https://doi.org/10.1016/j.jpowsour.2010.09.031

    Article  CAS  Google Scholar 

  4. Balaish M, Kraytsberg A, Ein-Eli Y (2014) Realization of an artificial three-phase reaction zone in a Li–air battery. Chem Electro Chem 1(1):90–94. https://doi.org/10.1002/celc.201300055

    Google Scholar 

  5. Monaco S, Soavi F, Mastragostino M (2013) Role of oxygen mass transport in rechargeable Li/O2 batteries operating with ionic liquids. J Phys Chem Lett 4(9):1379–1382. https://doi.org/10.1021/jz4006256

    Article  CAS  Google Scholar 

  6. Sharon D, Etacheri V, Garsuch A, Afri M, Frimer AA, Aurbach D (2013) On the challenge of electrolyte solutions for Li−air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J Phys Chem Lett 4(1):127–131. https://doi.org/10.1021/jz3017842

    Article  CAS  Google Scholar 

  7. Trahan MJ, Mukerjee S, Plichta EJ, Hendrickson MA, Abrahama KM (2013) Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160:A259–A267

    Article  CAS  Google Scholar 

  8. Das SK, Lau S, Archer LA (2014) Sodium–oxygen batteries: a new class of metal–air batteries. J Mater Chem A 2:2623–2629

    Article  Google Scholar 

  9. Hartmann P, Bender CL, Vracar M, Dürr AK, Garsuch A, Janek J, Adelhelm P (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12(3):228–232. https://doi.org/10.1038/nmat3486

    Article  CAS  Google Scholar 

  10. Yadegari H, Li Y, Mohammad YL, Banis MN, Li X, Wang B, Sun Q, Li R, Sham TK, Cui X, Sun X (2014) On rechargeability and reaction kinetics of sodium–air batteries. Energy Environ Sci 7:3747–3757

    Article  CAS  Google Scholar 

  11. Bender CL, Hartmann P, Vracˇar M, Adelhelm P, Jane J (2014) On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery. Adv Energy Mater 4(12). https://doi.org/10.1002/aenm.201301863

  12. Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7(6):496–501. https://doi.org/10.1038/nchem.2260

    Article  CAS  Google Scholar 

  13. Peled E, Golodnizky D, Mazor H, Goor M, Avshalomov S (2011) Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J Power Sources 196(16):6835–6840. https://doi.org/10.1016/j.jpowsour.2010.09.104

    Article  CAS  Google Scholar 

  14. Peled E, Golodnitsky D, Hadar R, Mazor H, Goor M, Burstein L (2013) Challenges and obstacles in the development of sodium air batteries. J Power Sources 244:771–776. https://doi.org/10.1016/j.jpowsour.2013.01.177

    Article  CAS  Google Scholar 

  15. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114(19):9178–9186. https://doi.org/10.1021/jp102019y

    Article  CAS  Google Scholar 

  16. Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2009) Elucidating the mechanism of oxygen reduction for lithium–air battery applications. J Phys Chem C 113(46):20127–20134. https://doi.org/10.1021/jp908090s

    Article  CAS  Google Scholar 

  17. De Giorgio F, Soavi F, Mastragostino M (2011) Effect of lithium ions on oxygen reduction in ionic liquid based electrolytes. Electrochem Commun 13(10):1090–1093. https://doi.org/10.1016/j.elecom.2011.07.004

    Article  Google Scholar 

  18. Monacoa S, Arangioa AM, Soavi F, Mastragostino M, Paillard E, Passerini S (2012) An electrochemical study of oxygen reduction in pyrrolidinium based ionic liquids for lithium/oxygen batteries. Electrochim Acta 83:94–104. https://doi.org/10.1016/j.electacta.2012.08.001

    Article  Google Scholar 

  19. Allen CJ, Hwang J, Kautz R, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2012) Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li−air batteries. J Phys Chem C 116(39):20755–20764. https://doi.org/10.1021/jp306718v

    Article  CAS  Google Scholar 

  20. Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li−O2 cells. J Am Chem Soc 135(1):494–500. https://doi.org/10.1021/ja310258x

    Article  CAS  Google Scholar 

  21. Viswanathan V, Thygesen KS, Hummelshøj JS, Nørskov JK, Girishkumar G, McCloskey BD, Luntz AC (2011) Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys 135(21):214704. https://doi.org/10.1063/1.3663385

    Article  CAS  Google Scholar 

  22. Weissermel K, Arpe HJ (1997) Industrial organic chemistry, 3rd edn. Wiley-VCH, Weinheim. https://doi.org/10.1002/9783527616688

    Book  Google Scholar 

  23. Harris JM (1985) Laboratory synthesis of polyethylene glycol derivatives. J Macromol Sci Polymer Rev 25(3):325–373. https://doi.org/10.1080/07366578508081960

    Article  Google Scholar 

  24. Johnson L, Li C, Liu Z, Chen Y, Freunberger SA, Ashok PC, Praveen BB, Dholakia K, Tarascon JM, Bruce PG (2014) The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat Chem 6(12):1091–1099. https://doi.org/10.1038/nchem.2101

    Article  CAS  Google Scholar 

  25. Maercker A (1987) Ether cleavage with organo-alkali-metal compounds and alkali metals. Angew Chem Int Ed Engl 26(10):972–989. https://doi.org/10.1002/anie.198709721

    Article  Google Scholar 

  26. Eisch JJ, Jacobs AM (1963) A convenient peparation of allyllithium. J Org Chem 28(8):2145–2146. https://doi.org/10.1021/jo01043a505

    Article  CAS  Google Scholar 

  27. Gilman H, Schwebke GL (1962) Improved method for the preparation of benzyllithium. J Org Chem 27(12):4259–4261. https://doi.org/10.1021/jo01059a031

    Article  CAS  Google Scholar 

  28. Freunberger SA, Chen Y, Drewerr NE, Hardwick LJ, Barde F, Bruce PG (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50(37):8609–8613. https://doi.org/10.1002/anie.201102357

    Article  CAS  Google Scholar 

  29. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems- the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051. https://doi.org/10.1149/1.2128859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been made with the financial support of ISF (INREP project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Golodnitsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faktorovich-Simon, E., Natan, A., Peled, E. et al. Oxygen redox processes in PEGDME-based electrolytes for the Na-air battery. J Solid State Electrochem 22, 1015–1022 (2018). https://doi.org/10.1007/s10008-017-3843-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3843-5

Keywords

Navigation