Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1517–1524 | Cite as

Electrochemical study of PtRh/C and PtRhNi/C electrocatalysts for ethylene glycol oxidation

Original Paper
  • 68 Downloads

Abstract

In the last decades, the ethylene glycol has been considered as another option of fuel, in both acid and alkaline solutions, for fuel cells application. Pt-based electrocatalysts are used in this type of technology but it is necessary to add a second or third oxophilic metal to form bimetallic or trimetallic alloys. Alloys with a second or a third metal modify electrocatalytic properties of Pt in order to overcome poisoning effects and enhancement of the electrocatalytic activity of platinum-based electrocatalyst. PtRh/C and PtRhNi/C electrocatalysts were prepared by alcohol reduction method, and their catalytic activity and stability were evaluated by cyclic voltammetry and chronoamperometry, in alkaline medium using a KOH solution with ethylene glycol in concentrations of 0.5 and 1.0 mol L−1. The results showed that the binary electrocatalyst has a higher electrocatalytic performance and obtain about 90% more energy density than PtRhNi/C. This result indicates that the higher amount of Rh in the alloy presents a synergistic effect with Pt. Chronoamperometry tests show that both electrocatalysts have an active surface and tolerance to poisoning by intermediate products, and the presence of Ni in the ternary electrocatalyst contributes to raise this tolerance.

References

  1. 1.
    González-Quijano D, Pech-Rodríguez WJ, Escalante-García JI, Vargas-Gutiérrez G, Rodríguez-Varela FJ (2015) Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part II: effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt-Ru/C anodes. Int J Hydrog Energy 40(48):17291–17299.  https://doi.org/10.1016/j.ijhydene.2015.06.154 CrossRefGoogle Scholar
  2. 2.
    Serov A, Kwak C (2010) Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl Catal B Environ 97(1-2):1–12.  https://doi.org/10.1016/j.apcatb.2010.04.011 CrossRefGoogle Scholar
  3. 3.
    Fashedemi OO, Miller HA, Marchionni A, Vizza F, Ozoemena KI (2015) Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity. J Mater Chem A3:7145–7156CrossRefGoogle Scholar
  4. 4.
    Kim Y, Kim H, Kim WB (2014) PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media. Electrochem Commun 46:36–39.  https://doi.org/10.1016/j.elecom.2014.06.007 CrossRefGoogle Scholar
  5. 5.
    Wang R, Wang H, Wang X, Liao S, Linkov V, Ji S (2013) Effect of the structure of Ni nanoparticles on the electrocatalytic activity of Ni@Pd/C for formic acid oxidation. Int J Hydrog Energy 38(29):13125–13131.  https://doi.org/10.1016/j.ijhydene.2013.01.104 CrossRefGoogle Scholar
  6. 6.
    Huang Y, Guo Y, Wang Y (2014) Ethylene glycol electrooxidation on core-shell PdCuBi nanoparticles fabricated via substitution and self-adsorption processes. J Power Sources 249:9–12.  https://doi.org/10.1016/j.jpowsour.2013.10.083 CrossRefGoogle Scholar
  7. 7.
    Xin L, Zhang Z, Qi J, Chadderdon D, Li W (2012) Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: reaction pathway investigation in three-electrode cell and fuel cell reactors. Appl Catal B Environ 125:85–94CrossRefGoogle Scholar
  8. 8.
    Sieben JM, Duarte MME (2012) Methanol, ethanol and ethylene glycol electro-oxidation at Pt and Pt-Ru catalysts electrodeposited over oxidized carbon nanotubes. Int J Hydrog Energy 37:9941–9947CrossRefGoogle Scholar
  9. 9.
    Xu Y, Han L (2014) Comprehensive understanding of electro-oxidation of ethylene glycol. Int J Hydrog Energy 39(14):7278–7290.  https://doi.org/10.1016/j.ijhydene.2014.03.035 CrossRefGoogle Scholar
  10. 10.
    Ramulifho T, Ozoemena KI, Modibedi RM, Jafta CJ, Mathe MK (2013) Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes. J Electroanal Chem 692:26–30CrossRefGoogle Scholar
  11. 11.
    Chatterjee M, Chatterjee A, Ghosh S, Basumallick I (2009) Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution. Electrochim Acta 54(28):7299–7304.  https://doi.org/10.1016/j.electacta.2009.07.054 CrossRefGoogle Scholar
  12. 12.
    Sieben JM, Duarte MME (2011) Nanostructured Pt and Pt-Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation. Int J Hydrog Energy 36(5):3313–3321.  https://doi.org/10.1016/j.ijhydene.2010.12.020 CrossRefGoogle Scholar
  13. 13.
    Lee S, Kim HJ, Choi SM, Seo MH, Kim WB (2012) The promotional effect of Ni on bimetallic PtNi/C catalysts for glycerol electrooxidation. Appl Catal A Gen 429–430:39–47CrossRefGoogle Scholar
  14. 14.
    Mukherjee P, Roy PS, Bhattacharya SK (2015) Improved carbonate formation from ethanol oxidation on nickel supported Pt-Rh electrode in alkaline medium at room temperature. Int J Hydrog Energy 40(39):13357–13367.  https://doi.org/10.1016/j.ijhydene.2015.07.154 CrossRefGoogle Scholar
  15. 15.
    Delpeuch B, Maillard A, Chatenet F, Soudant P, Cremers C (2016) Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: a DEMS and in situ FTIR study. Appl Catal B Environ 181:672–680.  https://doi.org/10.1016/j.apcatb.2015.08.041 CrossRefGoogle Scholar
  16. 16.
    Pupo MMS, Suarez FEL, Lopez AB, Meneses CT, Eguiluz KIB, Banda GRS (2014) Sn@Pt and Rh@Pt core–shell nanoparticles synthesis for glycerol oxidation. J Appl Electrochem 45:139–150CrossRefGoogle Scholar
  17. 17.
    Bergamaski K, Gonzalez ER, Nart FC (2008) Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts. Electrochim Acta 53(13):4396–4406.  https://doi.org/10.1016/j.electacta.2008.01.060 CrossRefGoogle Scholar
  18. 18.
    Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt–Ru, Pt–Rh and Pt–Ru–Rh nanoparticles. Electrochim Acta 53(6):2963–2971.  https://doi.org/10.1016/j.electacta.2007.11.007 CrossRefGoogle Scholar
  19. 19.
    Ribadeneira E, Hoyos BA (2008) Evaluation of Pt–Ru–Ni and Pt–Sn–Ni catalysts as anodes in direct ethanol fuel cells. J Power Sources 180(1):238–242.  https://doi.org/10.1016/j.jpowsour.2008.01.084 CrossRefGoogle Scholar
  20. 20.
    Silva EL, Correa OS, Oliveira EL, Takimi AS, Radtke C, Malfatti CF (2010) Síntese e caracterização de ligas de Pt-Sn-Ni para aplicação como catalisadores em células a combustível do tipo DEFC. CBECiMat 19:21–25Google Scholar
  21. 21.
    Jiang Q, Jiang L, Wang S, Jing Q, Sun G (2010) A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media. Catal Commun 12(1):67–70.  https://doi.org/10.1016/j.catcom.2010.08.001 CrossRefGoogle Scholar
  22. 22.
    Neto AO, Dias RR, Tusi MM, Linardi M, Spinacé EV (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 166(1):87–91.  https://doi.org/10.1016/j.jpowsour.2006.12.088 CrossRefGoogle Scholar
  23. 23.
    Shen SY, Zhao TS, JB X (2010) Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. Int J Hydrog Energy 35(23):12911–12917.  https://doi.org/10.1016/j.ijhydene.2010.08.107 CrossRefGoogle Scholar
  24. 24.
    Song P, Liu L, Wang AJ, Zhang X, Zhou SY, Feng JJ (2015) One-pot synthesis of platinum-palladium-cobalt alloyed nanoflowers with enhanced electrocatalytic activity for ethylene glycol oxidation. Electrochim Acta 164:323–329.  https://doi.org/10.1016/j.electacta.2015.02.229 CrossRefGoogle Scholar
  25. 25.
    Soares LA, Morais C, Napporn TW, Kokoh KB, Olivi P (2016) Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. J Power Sources 315:47–55.  https://doi.org/10.1016/j.jpowsour.2016.03.013 CrossRefGoogle Scholar
  26. 26.
    Chu YH, Shul YG (2010) Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. Int J Hydrog Energy 35(20):11261–11270.  https://doi.org/10.1016/j.ijhydene.2010.07.062 CrossRefGoogle Scholar
  27. 27.
    Nassr ABAA, Sinev I, Grünert W, Bron M (2013) PtNi supported on oxygen functionalized carbon nanotubes: in depth structural characterization and activity for methanol electrooxidation. Appl Catal B Environ 142–143:849–860CrossRefGoogle Scholar
  28. 28.
    Li M, Zhou W-P, Marinkovic NS, Sasaki K, Adzic RR (2013) The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochim Acta 104:454–461.  https://doi.org/10.1016/j.electacta.2012.10.046 CrossRefGoogle Scholar
  29. 29.
    Gupta SS, Datta J (2006) A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits. J Electroanal Chem 594(1):65–72.  https://doi.org/10.1016/j.jelechem.2006.05.022 CrossRefGoogle Scholar
  30. 30.
    Lu Y, Jiang Y, Wu H, Chen W (2013) Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping-cleaning. J Phys Chem C 117(6):2926–2938.  https://doi.org/10.1021/jp3116726 CrossRefGoogle Scholar
  31. 31.
    Fang L, Vidal-Iglesias FJ, Huxter SE, Attard GA (2008) A study of the growth and CO electrooxidation behaviour of PtRh alloys on Pt{100} single crystals. J Electroanal Chem 622(1):73–78.  https://doi.org/10.1016/j.jelechem.2008.05.003 CrossRefGoogle Scholar
  32. 32.
    Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54(7):1992–1998.  https://doi.org/10.1016/j.electacta.2008.07.003 CrossRefGoogle Scholar
  33. 33.
    Lv JJ, Zheng JN, Wang YY, Wang AJ, Chen LL, Feng JJ (2014) A simple one-pot strategy to platinum-palladium@palladium core-shell nanostructures with high electrocatalytic activity. J Power Sources 265:231–238.  https://doi.org/10.1016/j.jpowsour.2014.04.108 CrossRefGoogle Scholar
  34. 34.
    Souza EA, Giz MJ, Camara GA, Antolini E, Passos RR (2014) Ethanol electro-oxidation on partially alloyed Pt-Sn-Rh/C catalysts. Electrochim Acta 147:483–489.  https://doi.org/10.1016/j.electacta.2014.09.141 CrossRefGoogle Scholar
  35. 35.
    Zheng JN, Li SS, Chen FY, Bao N, Wang AJ, Chen JR, Feng JJ (2014) Facile synthesis of platinum-ruthenium nanodendrites supported on reduced graphene oxide with enhanced electrocatalytic properties. J Power Sources 266:259–267.  https://doi.org/10.1016/j.jpowsour.2014.04.128 CrossRefGoogle Scholar
  36. 36.
    Maiyalagan T, Alaje TO, Scott K (2012) Highly stable Pt-Ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (Pt-Ru/CMK-8) as promising electrocatalysts for methanol oxidation. J Phys Chem C 116(3):2630–2638.  https://doi.org/10.1021/jp210266n CrossRefGoogle Scholar
  37. 37.
    Martínez-Huerta MV, Rojas S, Fuente JLG, Terreros P, Pena MA, Fierro JLG (2006) Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications. Appl Catal B Environ 69(1-2):75–84.  https://doi.org/10.1016/j.apcatb.2006.05.020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • V. L. Marinho
    • 1
    • 2
  • L. A. Pocrifka
    • 1
  • R. R. Passos
    • 1
  1. 1.Federal University of AmazonasManausBrazil
  2. 2.Federal Institute of AmazonasParintinsBrazil

Personalised recommendations