Journal of Solid State Electrochemistry

, Volume 22, Issue 3, pp 859–868 | Cite as

Electrochemical machining of tungsten carbide

  • N. Schubert
  • M. Schneider
  • A. Michaelis
  • M. Manko
  • M. M. Lohrengel
Original Paper


Electrochemical machining (ECM) is characterized amongst other things, by extremely high current densities and a high dissolution rate of material. Due to the extreme current densities under ECM conditions, tungsten carbide forms adherent, supersaturated, viscous films of polytungstates close to the interface. This film is permanently dissolved by electrolyte flow and is reproduced at the electrode surface. The dissolution proceeds in an active state up to 30 A cm−2. An additional layer is formed at higher current densities which means that there is a passive state and the presence of high-field oxide films with thicknesses around 10 nm. The complex interaction between current, field strength, and oxide thickness yields a constant resistance to the oxide film. The formation of an oxide film is also indicated by the onset of oxygen evolution which consumes about 20% of anodic charge. The interaction of ionic currents (oxide formation and dissolution) and electronic currents (oxygen evolution) is small due to completely different conduction mechanisms.


Anodic dissolution Electrochemical machining (ECM) Tungsten carbide 



The authors gratefully thank the German Research Foundation (DFG) for their financial support (LO 319/16-2, MI 509/16-2, and SCHN 745/11-2).


  1. 1.
    Bannard J (1977) Electrochemical machining. J Appl Electrochem 7(1):1–29. CrossRefGoogle Scholar
  2. 2.
    Datta M (1993) Anodic dissolution of metals at high rates. IBM J Res Dev 37(2):207–226. CrossRefGoogle Scholar
  3. 3.
    McGeough J (1974) Priciples of electrochemical machining. Chapman and Hall, LondonGoogle Scholar
  4. 4.
    Schneider M, Lohrengel MM (2017) Electrochemical machining. In: Breitkopf C, Swider-Lyons K (eds) Springer-Handbook of Electrochemical Energy. Springer, Dordrecht, pp 941–971CrossRefGoogle Scholar
  5. 5.
    Landolt D (1972) Flow channel cell apparatus for high rate electrolysis studies. Rev Sci Instrum 43(4):592–595. CrossRefGoogle Scholar
  6. 6.
    Lohrengel MM, Rosenkranz C, Klüppel I, Moehring A, Bettermann H, van Bossche BD, Deconinck J (2004) Electrochim Acta 49(17-18):2863–2870. CrossRefGoogle Scholar
  7. 7.
    Schneider M, Schroth S, Schubert N, Michaelis A (2012) In-situ investigation of the surface-topography during anodic dissolution of copper under near-ECM conditions. Mater Corros 63(2):96–104. CrossRefGoogle Scholar
  8. 8.
    Bockris JOM, Khan SUM (1993) Surface electrochemistry—a molecular level approach. Plenum Press, New York. CrossRefGoogle Scholar
  9. 9.
    Rosenkranz C, Lohrengel MM, Schultze JW (2005) The surface structure during pulsed ECM of iron in NaNO3. Electrochim Acta 50(10):2009–2016. CrossRefGoogle Scholar
  10. 10.
    Glarum SH, Marshall JH (1985) J Electrochem Soc 132:2872–2885CrossRefGoogle Scholar
  11. 11.
    Matlosz M, Magaino S, Landolt D (1994) J Electrochem Soc 141:410–418CrossRefGoogle Scholar
  12. 12.
    Datta M, Mathieu HJ, Landolt D (1979) Anodic film studies on nickel under high rate transpassive dissolution conditions. Electrochim Acta 24(8):843–850. CrossRefGoogle Scholar
  13. 13.
    Datta M, Landolt D (1975) J Electrochem Soc 122:1466–1472CrossRefGoogle Scholar
  14. 14.
    Datta M, Mathieu HJ, Landolt D (1984) J Electrochem Soc 131:2484–2489CrossRefGoogle Scholar
  15. 15.
    Datta M, Landolt D (1980) On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes—I. Chloride solutions. Electrochim Acta 25(10):1255–1262. CrossRefGoogle Scholar
  16. 16.
    Datta M, Landolt D (1980) On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes—II. Chlorate and nitrate solutions. Electrochim Acta 25(10):1263–1271. CrossRefGoogle Scholar
  17. 17.
    Datta M, Landolt D (1981) Electrochemical machining under pulsed current conditions. Electrochim Acta 26(7):899–907. CrossRefGoogle Scholar
  18. 18.
    Lohrengel MM (2005) Pulsed electrochemical machining of iron in nano3: fundamentals and new aspects. Mater Manuf Process 20(1):1–9. CrossRefGoogle Scholar
  19. 19.
    Moehring A (2004) Entwicklung einer elektrochemischen Durchflusszelle zur Untersuchung des Elektrochemischen Senkens (ECM, Electrochemical Machining). Dissertaion thesis, Heinrich-Heine-Universität, DüsseldorfGoogle Scholar
  20. 20.
    Rataj K, Hammer C, Walther B, Lohrengel MM (2013) Quantified oxygen evolution at microelectrodes. Electrochim Acta 90:12–16. CrossRefGoogle Scholar
  21. 21.
    Aladjem A, Brandon DG, Yahalom J (1970) Electron-beam crystallization of anodic oxide films. Electrochim Acta 15(5):663–671. CrossRefGoogle Scholar
  22. 22.
    Ammar IA, Salim R (1971) Anodic behaviour of tungsten—I. Oxidation kinetics in acid media. Corros Sci 11(8):591–609. CrossRefGoogle Scholar
  23. 23.
    Ammar IA, Salim R (1972) Anodic polarization of tungsten in neutral and alkaline solutions under conditions of anode film growth. Werkst Korros 23(3):161–167. CrossRefGoogle Scholar
  24. 24.
    Di Quarto F, Di Paola A, Sunseri C (1980) J Electrochem Soc 127:1016–1021CrossRefGoogle Scholar
  25. 25.
    Vermilyea DA (1963) Journal of The Electrochem Society 110:345Google Scholar
  26. 26.
    Arora MR, Kelly R (1977) J Electrochem Soc 124:1493–1499CrossRefGoogle Scholar
  27. 27.
    Khalil N, Leach JS (1986) The anodic oxidation of valve metals—I. Determination of ionic transport numbers by α-spectrometry. Electrochim Acta 31(10):1279–1285. CrossRefGoogle Scholar
  28. 28.
    Rataj KP (2013) Elektrochemische Charakterisierung technisch relevanter anodischer Oxidschichten bei niedrigen und höchsten Stromdichten. dissertation thesis, Heinrich-Heine-Universität DüsseldorfGoogle Scholar
  29. 29.
    Walther B, Schilm J, Michaelis A, Lohrengel MM (2007) Electrochemical dissolution of hard metal alloys. Electrochim Acta 52(27):7732–7737. CrossRefGoogle Scholar
  30. 30.
    Lohrengel MM (1993) Mat Sci Eng R11:243–294CrossRefGoogle Scholar
  31. 31.
    Schultze JW, Vetter KJ (1973) The influence of the tunnel probability on the anodic oxygen evolution and other redox reactions at oxide covered platinum electrodes. Electrochim Acta 18(11):889–896. CrossRefGoogle Scholar
  32. 32.
    Schultze JW (1970) Potentiostatische Messungen zur Sauerstoffentwicklung und Oxidschichtbildung an Platinelektroden. Z Phys Chem 73(1_3):29–47. CrossRefGoogle Scholar
  33. 33.
    Schneider M, Schroth S, Richter S, Hohn S, Schubert N, Michaelis A (2011) In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions—Part 1: the active state. Electrochim Acta 56(22):7628–7636. CrossRefGoogle Scholar
  34. 34.
    Landolt D (2007) Corrosion and surface chemistry of metals. EPFL Press Lausanne: 59–61 and 89–91Google Scholar
  35. 35.
    Chung-Cherng L, Pouyan S (1993) Role of screw axes in dissolution of willemite. Geochim Cosmochim Acta 57(8):1649–1655. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Material ScienceTU DresdenDresdenGermany
  2. 2.Fraunhofer IKTS DresdenDresdenGermany
  3. 3.Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations