Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1459–1469 | Cite as

A new low bandgap hybrid polymer film obtained by electropolymerization of 3,4-ethylenedioxythiophene with bis(1,3-dithiole-2-thione-4,5-dithiolate)platinate(II) dianion, PEDOT/[Pt(dmit)2]2−

  • Antonio Gerson Bernardo da Cruz
  • Maria Elena Leyva
  • Renata Antoun Simão
Original Paper


In this work, we report the electrochemical polymerization of novel low bandgap hybrid polymer films based on 3,4-ethylenedioxythiophene containing bis(1,3-dithiole-2-thione-4,5-dithiolate)platinate(II) dianions, PEDOT/[Pt(dmit)2]2− which were obtained under galvanostatic conditions using a synthesis charge (Qs) of 12.5 mC cm−2. Morphological studies of these films by SEM and AFM revealed a regular surface with volumetric roughness (RMS) of 141.8 nm as well as high homogeneity in its composition. FTIR studies depicted bands assigned to both polymer and counterions, confirming a strong interaction among the components. Cyclic voltammetry in a monomer free solution showed well-defined peaks and potentials similar to that of the free counterion, evincing that the electron transfer processes in the film are mainly ruled by the dmit-based counterion. Optoelectronics studies of hybrid films showed a strong absorption at 786 nm and a multicolor electrochromism (greenish yellow-deep green). The direct optical bandgap (E g), calculated from the absorption spectrum, was 1.42 eV, suggesting that the dmit-based dianion plays an important role on the optoelectronic properties of the hybrid polymer films.
Graphical Abstract


poly(3,4-ethylenedioxythiophene) PEDOT Conducting polymer Hybrid material bis(1,3-dithiole-2-thione-4,5-dithiolate) platinate(II) dmit Low bandgap 



The author would like to dedicate this work to my friend Cassiano Pedro da Silva who passed away on December 12, 2016.


  1. 1.
    Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–206CrossRefGoogle Scholar
  2. 2.
    Jenekhe SA (1986) A class of narrow-band-gap semiconducting polymers. Nature 322:345–347CrossRefGoogle Scholar
  3. 3.
    Chen W-C, Jenekhe SA (1995) Small-bandgap conducting polymers based on conjugated poly(heteroarylene methines). 2. Synthesis, structure, and properties. Macromolecules 28:465–480CrossRefGoogle Scholar
  4. 4.
    Hung T-T, Chen S-A (1999) The synthesis and characterization of soluble poly(isothianaphthene) derivative: poly(5,6-dihexoxyisothianaphthene). Polymer 40:3881–3884CrossRefGoogle Scholar
  5. 5.
    Toussaint JM, Bredas JL (1993) Theoretical analysis of the geometric and electronic structure of small-band-gap polythiophenes: poly(5,5′-bithiophene methine) and its derivatives. Macromol 26:5240–5248CrossRefGoogle Scholar
  6. 6.
    Benincori T, Rizzo S, Sannicolò F, Schiavon G, Zecchin S, Zotti G (2003) An electrochemically prepared small-bandgap poly(biheteroarylidenemethine):poly{bi[(3,4-ethylenedioxy)thienylene]methine}. Macromolecules 36:5114–5118CrossRefGoogle Scholar
  7. 7.
    Wolfart F, Hryniewicz BM, Góes MS, Corrêa CM, Torresi R, Minadeo MAOS, Córdoba SI, Oliveira RD, Marchesi LF, Vidotti M (2017) Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 21:2489–2515CrossRefGoogle Scholar
  8. 8.
    Yigitsoy B, Varis S, Tanyeli C, Akhmedov IM, Toppare L (2007) Electrochromic properties of a novel low bandgap conductive copolymer. Electrochim Acta 52:6561–6568CrossRefGoogle Scholar
  9. 9.
    Raj PG, Rani VS, Kanwat A, Jang J (2016) Enhanced organic photovoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide doping. Mater Res Bull 74:346–352CrossRefGoogle Scholar
  10. 10.
    Aradilla D, Azambuja D, Estrany F, Casas MT, Ferreira CA, Alemán C (2012) Hybrid polythiophene–clay exfoliated nanocomposites for ultracapacitor devices. J Mater Chem 22:13110–13122CrossRefGoogle Scholar
  11. 11.
    Ghosh CK, Chakraborty A (2016) Chemistry of 3-carbonyl-2-methyl-4-oxo-4H-1-benzopyrans. ARKIVOC 2016:111–149CrossRefGoogle Scholar
  12. 12.
    Kanibolotsky AL, Findlay NJ, Skabara PJ (2015) Polythiophene and oligothiophene systems modified by TTF electroactive units for organic electronics. Beilstein J Org Chem 11:1749–1766CrossRefGoogle Scholar
  13. 13.
    Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K (2011) Pedot: principles and applications of an intrinsically conductive polymer. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    Bubnova O, Khan ZU, Wang H, Braun S, Evans DR, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J-B, Geerts YH, Desbief S, Breiby DW, Andreasen JW, Lazzaroni R, Chen WM, Zozoulenko I, Fahlman M, Murphy PJ, Berggren M, Crispin X (2013) Semi-metallic polymers. Nat Mater 13:190–194CrossRefGoogle Scholar
  15. 15.
    Nowak AP, Wilamowska M, Lisowska-Oleksiak A (2010) Spectroelectrochemical characteristics of poly(3,4-ethylenedioxythiophene)/iron hexacyanoferrate film-modified electrodes. J Solid State Electrochem 14:263–270CrossRefGoogle Scholar
  16. 16.
    Xia Z (2016) Biomimetic principles and design of advanced engineering materials. John Wiley & Sons Inc, United KingdonCrossRefGoogle Scholar
  17. 17.
    Bernhardt PV, Kilah NL (2007) Macrocyclic cobalt(III) complexes as precursors for metal-polythiophene hybrid materials. Polyhedron 26:392–399CrossRefGoogle Scholar
  18. 18.
    da Cruz AGB, Wardell JL, Rocco AM (2008) Hybrid organic–inorganic materials based on polypyrrole and 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) containing dianions. J Mater Sci 43:5823–5836CrossRefGoogle Scholar
  19. 19.
    da Cruz AGB, Wardell JL, Rangel MVD, Simão RA, Rocco AM (2007) Preparation and characterization of a polypyrrole hybrid film with [Ni(dmit)2]2−, bis(1,3-dithiole-2-thione-4,5-dithiolate)nickellate(II). Synt Met 157:80–90CrossRefGoogle Scholar
  20. 20.
    da Cruz AGB, Wardell JL, Simão RA, Rocco AM (2007) Preparation, structure and electrochemistry of a polypyrrole hybrid film with [Pd(dmit)2]2−, bis(1,3-dithiole-2-thione-4,5-dithiolate)palladate(II). Electrochim Acta 52:1899–1909CrossRefGoogle Scholar
  21. 21.
    da Cruz AGB, Wardell JL, Rocco AM (2006) A novel material obtained by electropolymerization of polypyrrole doped with [Sn(dmit)3]2−, [tris(1,3-dithiole-2-thione-4,5-dithiolato)-stannate]2−. Synth Met 156:396–404CrossRefGoogle Scholar
  22. 22.
    Svenstrup N, Becher J (1995) The organic chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (DMIT). Synthesis 1995:215–235CrossRefGoogle Scholar
  23. 23.
    Wang C, Batsanov AS, Bryce MR, Howard JAK (1998) An improved large-scale (90 g) synthesis of Bis(tetraethylammonium)bis(1,3-dithiole-2-thione-4,5-dithiol)zincate: synthesis and X-ray crystal structures of bicyclic and tricyclic 1,4-dithiocines derived from 1,3-dithiole-2-thione-4,5-dithiolate (DMIT). Synthesis 1998:1615–1618CrossRefGoogle Scholar
  24. 24.
    Abdulla HS (2013) Electrochemical synthesis and vibrational mode analysis of poly (3-methelthiophene). Int J Electrochem Sci 8:11782–11790Google Scholar
  25. 25.
    Karabozhikova VI, Tsakova VT (2017) Electroless deposition of silver on poly(3,4-ethylenedioxythiophene) obtained in the presence of polystyrene sulfonate or dodecyl sulfate ions—effect of polymer layer thickness. Bulg Chem Comm 49:37–43Google Scholar
  26. 26.
    Wernet W, Wegner G (1987) Electrochemistry of thin polypyrrole films. Macromol Chem Phys 188:1465–1475CrossRefGoogle Scholar
  27. 27.
    Selvaganesh SV, Mathiyarasu J, Phani KLN, Yegnaraman V (2007) Chemical synthesis of PEDOT–Au nanocomposite. Nanoscale Res Lett 2:546–549CrossRefGoogle Scholar
  28. 28.
    Kvarnström C, Neugebauer H, Ivaska A, Sariciftci NS (2000) Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. J Mol Struct 521:271–277CrossRefGoogle Scholar
  29. 29.
    Damlin P, Kvarnström C, Ivaska A (2004) Electrochemical synthesis and in situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) in room temperature ionic liquids. J Electroanal Chem 570:113–122CrossRefGoogle Scholar
  30. 30.
    Cho W, Im S, Kim S, Kim S, Kim J (2016) Synthesis and characterization of PEDOT:P(SS-co-VTMS) with hydrophobic properties and excellent thermal stability. Polymers 8:189CrossRefGoogle Scholar
  31. 31.
    Ferreira GB, Comerlato NM, Wardell JL, Hollauer E (2004) Vibrational spectra of bis(dmit) complexes of main group metals: IR, Raman and ab initio calculations. J Braz Chem Soc 15:951–963CrossRefGoogle Scholar
  32. 32.
    Ma X, Ni X (2014) Copolymerization of EDOT with Pyrrole on TiO2 semiconductor films by one-step reaction, structure-dependent electronic properties, and charge conduction models of the composite films. Langmuir 30:2241–2248CrossRefGoogle Scholar
  33. 33.
    Liu G, Fang Q, Xu W, Chen H, Wang C (2004) Vibration assignment of carbon–sulfur bond in 2-thione-1,3-dithiole-4,5-dithiolate derivatives. Spectrochim Acta Part A 60:541–550CrossRefGoogle Scholar
  34. 34.
    Takashi Y, Yakuhiro N, Masafumi T, Takeo F, Reizo K, Kyuya Y (2011) Vibrational spectra of [Pd(dmit)2] dimer (dmit = 1,3-dithiole-2-thione-4,5-dithiolate): methodology for examining charge, inter-molecular interactions, and orbital. J Phys Soc Jpn 80:074717CrossRefGoogle Scholar
  35. 35.
    Rocco AM, Pereira RP, Bonapace JAP, Comerlato NM, Wardell JL, Milne BF, Wardell SMSV (2004) A theoretical study of tetrabutylammonium [bis(1,3-dithiole-2-thione-4,5-dithiolato)bismuthate], [NBu4][Bi(dmit)2]: infrared spectrum in the solid state and solvation effects on the molecular geometry. Inorg Chim Acta 357:1047–1053CrossRefGoogle Scholar
  36. 36.
    Sun H, Zhang L, Dong L, Zhu X, Ming S, Zhang Y, Xing H, Duan X, Xu J (2016) Aqueous electrosynthesis of an electrochromic material based water-soluble EDOT-MeNH2 hydrochloride. Synth Met 211:147–154CrossRefGoogle Scholar
  37. 37.
    Kulandaivalu S, Zainal Z (2015) A new approach for electrodeposition of poly (3, 4-ethylenedioxythiophene)/polyaniline (PEDOT/PANI) copolymer. Int J Electrochem Sci 10:8926–8940Google Scholar
  38. 38.
    Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32:6807–6812CrossRefGoogle Scholar
  39. 39.
    Misra A, Kumar P, Srivastava R, Dhawan SK, Kamalasanan MN, Chandra S (2005) Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J Pure Appl Phys 43:921–925Google Scholar
  40. 40.
    Chen J, Zhang J, Zou Y, X, W, Zhu D (2017) PPN (poly-peri-naphthalene) film as a narrow-bandgap organic thermoelectric material. J Mater Chem A 5:9891–9896Google Scholar
  41. 41.
    Bundgaard E, Krebs FC (2007) Low bandgap polymer materials for organic solar cells. Sol Energy Mat Sol Cell 91:954–985CrossRefGoogle Scholar
  42. 42.
    Soganci T, Kurtay G, Ak M, Güllü M (2015) Preparation of an EDOT-based polymer: optoelectronic properties and electrochromic device application. RSC Adv 5:2630–2639CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Antonio Gerson Bernardo da Cruz
    • 1
  • Maria Elena Leyva
    • 2
  • Renata Antoun Simão
    • 3
  1. 1.Departamento de QuímicaUniversidade Federal Rural do Rio de Janeiro (UFRRJ)Rio de JaneiroBrazil
  2. 2.Instituto de Física e QuímicaUniversidade Federal de Itajubá (UNIFEI)ItajubáBrazil
  3. 3.PEMM/COPPEUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations