Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1459–1469 | Cite as

A new low bandgap hybrid polymer film obtained by electropolymerization of 3,4-ethylenedioxythiophene with bis(1,3-dithiole-2-thione-4,5-dithiolate)platinate(II) dianion, PEDOT/[Pt(dmit)2]2−

  • Antonio Gerson Bernardo da Cruz
  • Maria Elena Leyva
  • Renata Antoun Simão
Original Paper
  • 60 Downloads

Abstract

In this work, we report the electrochemical polymerization of novel low bandgap hybrid polymer films based on 3,4-ethylenedioxythiophene containing bis(1,3-dithiole-2-thione-4,5-dithiolate)platinate(II) dianions, PEDOT/[Pt(dmit)2]2− which were obtained under galvanostatic conditions using a synthesis charge (Qs) of 12.5 mC cm−2. Morphological studies of these films by SEM and AFM revealed a regular surface with volumetric roughness (RMS) of 141.8 nm as well as high homogeneity in its composition. FTIR studies depicted bands assigned to both polymer and counterions, confirming a strong interaction among the components. Cyclic voltammetry in a monomer free solution showed well-defined peaks and potentials similar to that of the free counterion, evincing that the electron transfer processes in the film are mainly ruled by the dmit-based counterion. Optoelectronics studies of hybrid films showed a strong absorption at 786 nm and a multicolor electrochromism (greenish yellow-deep green). The direct optical bandgap (E g), calculated from the absorption spectrum, was 1.42 eV, suggesting that the dmit-based dianion plays an important role on the optoelectronic properties of the hybrid polymer films.
Graphical Abstract

Keywords

poly(3,4-ethylenedioxythiophene) PEDOT Conducting polymer Hybrid material bis(1,3-dithiole-2-thione-4,5-dithiolate) platinate(II) dmit Low bandgap 

Notes

Acknowledgments

The author would like to dedicate this work to my friend Cassiano Pedro da Silva who passed away on December 12, 2016.

References

  1. 1.
    Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–206CrossRefGoogle Scholar
  2. 2.
    Jenekhe SA (1986) A class of narrow-band-gap semiconducting polymers. Nature 322:345–347CrossRefGoogle Scholar
  3. 3.
    Chen W-C, Jenekhe SA (1995) Small-bandgap conducting polymers based on conjugated poly(heteroarylene methines). 2. Synthesis, structure, and properties. Macromolecules 28:465–480CrossRefGoogle Scholar
  4. 4.
    Hung T-T, Chen S-A (1999) The synthesis and characterization of soluble poly(isothianaphthene) derivative: poly(5,6-dihexoxyisothianaphthene). Polymer 40:3881–3884CrossRefGoogle Scholar
  5. 5.
    Toussaint JM, Bredas JL (1993) Theoretical analysis of the geometric and electronic structure of small-band-gap polythiophenes: poly(5,5′-bithiophene methine) and its derivatives. Macromol 26:5240–5248CrossRefGoogle Scholar
  6. 6.
    Benincori T, Rizzo S, Sannicolò F, Schiavon G, Zecchin S, Zotti G (2003) An electrochemically prepared small-bandgap poly(biheteroarylidenemethine):poly{bi[(3,4-ethylenedioxy)thienylene]methine}. Macromolecules 36:5114–5118CrossRefGoogle Scholar
  7. 7.
    Wolfart F, Hryniewicz BM, Góes MS, Corrêa CM, Torresi R, Minadeo MAOS, Córdoba SI, Oliveira RD, Marchesi LF, Vidotti M (2017) Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 21:2489–2515CrossRefGoogle Scholar
  8. 8.
    Yigitsoy B, Varis S, Tanyeli C, Akhmedov IM, Toppare L (2007) Electrochromic properties of a novel low bandgap conductive copolymer. Electrochim Acta 52:6561–6568CrossRefGoogle Scholar
  9. 9.
    Raj PG, Rani VS, Kanwat A, Jang J (2016) Enhanced organic photovoltaic properties via structural modifications in PEDOT:PSS due to graphene oxide doping. Mater Res Bull 74:346–352CrossRefGoogle Scholar
  10. 10.
    Aradilla D, Azambuja D, Estrany F, Casas MT, Ferreira CA, Alemán C (2012) Hybrid polythiophene–clay exfoliated nanocomposites for ultracapacitor devices. J Mater Chem 22:13110–13122CrossRefGoogle Scholar
  11. 11.
    Ghosh CK, Chakraborty A (2016) Chemistry of 3-carbonyl-2-methyl-4-oxo-4H-1-benzopyrans. ARKIVOC 2016:111–149CrossRefGoogle Scholar
  12. 12.
    Kanibolotsky AL, Findlay NJ, Skabara PJ (2015) Polythiophene and oligothiophene systems modified by TTF electroactive units for organic electronics. Beilstein J Org Chem 11:1749–1766CrossRefGoogle Scholar
  13. 13.
    Elschner A, Kirchmeyer S, Lövenich W, Merker U, Reuter K (2011) Pedot: principles and applications of an intrinsically conductive polymer. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    Bubnova O, Khan ZU, Wang H, Braun S, Evans DR, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J-B, Geerts YH, Desbief S, Breiby DW, Andreasen JW, Lazzaroni R, Chen WM, Zozoulenko I, Fahlman M, Murphy PJ, Berggren M, Crispin X (2013) Semi-metallic polymers. Nat Mater 13:190–194CrossRefGoogle Scholar
  15. 15.
    Nowak AP, Wilamowska M, Lisowska-Oleksiak A (2010) Spectroelectrochemical characteristics of poly(3,4-ethylenedioxythiophene)/iron hexacyanoferrate film-modified electrodes. J Solid State Electrochem 14:263–270CrossRefGoogle Scholar
  16. 16.
    Xia Z (2016) Biomimetic principles and design of advanced engineering materials. John Wiley & Sons Inc, United KingdonCrossRefGoogle Scholar
  17. 17.
    Bernhardt PV, Kilah NL (2007) Macrocyclic cobalt(III) complexes as precursors for metal-polythiophene hybrid materials. Polyhedron 26:392–399CrossRefGoogle Scholar
  18. 18.
    da Cruz AGB, Wardell JL, Rocco AM (2008) Hybrid organic–inorganic materials based on polypyrrole and 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) containing dianions. J Mater Sci 43:5823–5836CrossRefGoogle Scholar
  19. 19.
    da Cruz AGB, Wardell JL, Rangel MVD, Simão RA, Rocco AM (2007) Preparation and characterization of a polypyrrole hybrid film with [Ni(dmit)2]2−, bis(1,3-dithiole-2-thione-4,5-dithiolate)nickellate(II). Synt Met 157:80–90CrossRefGoogle Scholar
  20. 20.
    da Cruz AGB, Wardell JL, Simão RA, Rocco AM (2007) Preparation, structure and electrochemistry of a polypyrrole hybrid film with [Pd(dmit)2]2−, bis(1,3-dithiole-2-thione-4,5-dithiolate)palladate(II). Electrochim Acta 52:1899–1909CrossRefGoogle Scholar
  21. 21.
    da Cruz AGB, Wardell JL, Rocco AM (2006) A novel material obtained by electropolymerization of polypyrrole doped with [Sn(dmit)3]2−, [tris(1,3-dithiole-2-thione-4,5-dithiolato)-stannate]2−. Synth Met 156:396–404CrossRefGoogle Scholar
  22. 22.
    Svenstrup N, Becher J (1995) The organic chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (DMIT). Synthesis 1995:215–235CrossRefGoogle Scholar
  23. 23.
    Wang C, Batsanov AS, Bryce MR, Howard JAK (1998) An improved large-scale (90 g) synthesis of Bis(tetraethylammonium)bis(1,3-dithiole-2-thione-4,5-dithiol)zincate: synthesis and X-ray crystal structures of bicyclic and tricyclic 1,4-dithiocines derived from 1,3-dithiole-2-thione-4,5-dithiolate (DMIT). Synthesis 1998:1615–1618CrossRefGoogle Scholar
  24. 24.
    Abdulla HS (2013) Electrochemical synthesis and vibrational mode analysis of poly (3-methelthiophene). Int J Electrochem Sci 8:11782–11790Google Scholar
  25. 25.
    Karabozhikova VI, Tsakova VT (2017) Electroless deposition of silver on poly(3,4-ethylenedioxythiophene) obtained in the presence of polystyrene sulfonate or dodecyl sulfate ions—effect of polymer layer thickness. Bulg Chem Comm 49:37–43Google Scholar
  26. 26.
    Wernet W, Wegner G (1987) Electrochemistry of thin polypyrrole films. Macromol Chem Phys 188:1465–1475CrossRefGoogle Scholar
  27. 27.
    Selvaganesh SV, Mathiyarasu J, Phani KLN, Yegnaraman V (2007) Chemical synthesis of PEDOT–Au nanocomposite. Nanoscale Res Lett 2:546–549CrossRefGoogle Scholar
  28. 28.
    Kvarnström C, Neugebauer H, Ivaska A, Sariciftci NS (2000) Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. J Mol Struct 521:271–277CrossRefGoogle Scholar
  29. 29.
    Damlin P, Kvarnström C, Ivaska A (2004) Electrochemical synthesis and in situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) in room temperature ionic liquids. J Electroanal Chem 570:113–122CrossRefGoogle Scholar
  30. 30.
    Cho W, Im S, Kim S, Kim S, Kim J (2016) Synthesis and characterization of PEDOT:P(SS-co-VTMS) with hydrophobic properties and excellent thermal stability. Polymers 8:189CrossRefGoogle Scholar
  31. 31.
    Ferreira GB, Comerlato NM, Wardell JL, Hollauer E (2004) Vibrational spectra of bis(dmit) complexes of main group metals: IR, Raman and ab initio calculations. J Braz Chem Soc 15:951–963CrossRefGoogle Scholar
  32. 32.
    Ma X, Ni X (2014) Copolymerization of EDOT with Pyrrole on TiO2 semiconductor films by one-step reaction, structure-dependent electronic properties, and charge conduction models of the composite films. Langmuir 30:2241–2248CrossRefGoogle Scholar
  33. 33.
    Liu G, Fang Q, Xu W, Chen H, Wang C (2004) Vibration assignment of carbon–sulfur bond in 2-thione-1,3-dithiole-4,5-dithiolate derivatives. Spectrochim Acta Part A 60:541–550CrossRefGoogle Scholar
  34. 34.
    Takashi Y, Yakuhiro N, Masafumi T, Takeo F, Reizo K, Kyuya Y (2011) Vibrational spectra of [Pd(dmit)2] dimer (dmit = 1,3-dithiole-2-thione-4,5-dithiolate): methodology for examining charge, inter-molecular interactions, and orbital. J Phys Soc Jpn 80:074717CrossRefGoogle Scholar
  35. 35.
    Rocco AM, Pereira RP, Bonapace JAP, Comerlato NM, Wardell JL, Milne BF, Wardell SMSV (2004) A theoretical study of tetrabutylammonium [bis(1,3-dithiole-2-thione-4,5-dithiolato)bismuthate], [NBu4][Bi(dmit)2]: infrared spectrum in the solid state and solvation effects on the molecular geometry. Inorg Chim Acta 357:1047–1053CrossRefGoogle Scholar
  36. 36.
    Sun H, Zhang L, Dong L, Zhu X, Ming S, Zhang Y, Xing H, Duan X, Xu J (2016) Aqueous electrosynthesis of an electrochromic material based water-soluble EDOT-MeNH2 hydrochloride. Synth Met 211:147–154CrossRefGoogle Scholar
  37. 37.
    Kulandaivalu S, Zainal Z (2015) A new approach for electrodeposition of poly (3, 4-ethylenedioxythiophene)/polyaniline (PEDOT/PANI) copolymer. Int J Electrochem Sci 10:8926–8940Google Scholar
  38. 38.
    Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32:6807–6812CrossRefGoogle Scholar
  39. 39.
    Misra A, Kumar P, Srivastava R, Dhawan SK, Kamalasanan MN, Chandra S (2005) Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J Pure Appl Phys 43:921–925Google Scholar
  40. 40.
    Chen J, Zhang J, Zou Y, X, W, Zhu D (2017) PPN (poly-peri-naphthalene) film as a narrow-bandgap organic thermoelectric material. J Mater Chem A 5:9891–9896Google Scholar
  41. 41.
    Bundgaard E, Krebs FC (2007) Low bandgap polymer materials for organic solar cells. Sol Energy Mat Sol Cell 91:954–985CrossRefGoogle Scholar
  42. 42.
    Soganci T, Kurtay G, Ak M, Güllü M (2015) Preparation of an EDOT-based polymer: optoelectronic properties and electrochromic device application. RSC Adv 5:2630–2639CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Antonio Gerson Bernardo da Cruz
    • 1
  • Maria Elena Leyva
    • 2
  • Renata Antoun Simão
    • 3
  1. 1.Departamento de QuímicaUniversidade Federal Rural do Rio de Janeiro (UFRRJ)Rio de JaneiroBrazil
  2. 2.Instituto de Física e QuímicaUniversidade Federal de Itajubá (UNIFEI)ItajubáBrazil
  3. 3.PEMM/COPPEUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations