Journal of Solid State Electrochemistry

, Volume 21, Issue 12, pp 3599–3610 | Cite as

The influence of the graphite structure changes on the high-energy electrochemical capacitor performance

  • I. AcznikEmail author
  • K. Lota
Original Paper


Combining the advantages of lithium-ion batteries and supercapacitors is an interesting solution to high-energy devices with the maintenance of high power output. Herein we report on the performance of the lithium-ion capacitors (LICs), exploiting graphene-based materials and activated carbon as negative and positive electrodes, respectively. The electrochemical properties of pre-lithiated reduced graphite oxides (reduced thermally—TRGO, or chemically—CRGO) and pristine graphite are compared based on measurements conducted in two- and three-electrode cells. Chemically reduced graphite oxide (CRGO) displays excellent performance at current densities up to 8 A g−1. The assembled hybrid capacitor delivers the energy density around 80 Wh kg−1 along a wide range of power densities. Promising results show that even at power value of 24.8 kW kg−1, the device retains energy density over 35 Wh kg−1. The cycle performance also shows good energy retention comparing with a graphite anode. However, better energy retention is observable for the TRGO-negative electrode material. After the 2000 of cycles, the AC/TRGO(Li) system loaded with the current density of 1 A g−1 provides energy of 58 Wh kg−1.

Graphical abstract


Energy storage Lithium-ion capacitor Graphite Structure modification Graphene 



Dr. Krzysztof Fic is acknowledged for his contribution to this manuscript. Financial support from the National Science Centre of Poland (grant number UMO-2013/09/D/ST5/03886) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148(8):A930–A939CrossRefGoogle Scholar
  2. 2.
    Cericola D, Kötz R (2012) Hybridization of rechargeable batteries and electrochemical capacitors: principle and limits. Electrochim Acta 72:1–17CrossRefGoogle Scholar
  3. 3.
    Cao WJ, Shih J, Zheng JP, Doung T (2014) Development and characterization of Li-ion capacitor pouch cells. J Power Sources 257:388–393CrossRefGoogle Scholar
  4. 4.
    Sivakkumar SR, Pandolfo AG (2014) Carbon nanotubes/amorphous carbon composites as high-power negative electrodes in lithium ion capacitors. J Appl Electrochem 44:105–113CrossRefGoogle Scholar
  5. 5.
    Sun X, Zhang X, Zhang H, Xu N, Wang K, Ma Y (2014) High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J Power Sources 270:318–325CrossRefGoogle Scholar
  6. 6.
    Dsoke S, Fuchs B, Gucciardi E, Wohlfahrt-Mehrens M (2015) The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. J Power Sources 282:385–393CrossRefGoogle Scholar
  7. 7.
    Zhang J, Shi Z, Wang J, Shi J (2015) Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance. J Electroanal Chem 747:20–28CrossRefGoogle Scholar
  8. 8.
    Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface 17(1):34–37Google Scholar
  9. 9.
    Ogihara N, Igarashi Y, Kamakura A, Naoi K, Kusachi Y, Utsugi K (2006) Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries. Electrochim Acta 52(4):1713–1720CrossRefGoogle Scholar
  10. 10.
    Aida T, Murayama I, Yamada K, Morita M (2007) High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. J Power Sources 166(2):462–470CrossRefGoogle Scholar
  11. 11.
    Woo S-W, Dokko K, Nakano H, Kanamura K (2007) Bimodal porous carbon as a negative electrode material for lithium-ion capacitors. Electrochemistry 75(8):635–640CrossRefGoogle Scholar
  12. 12.
    Khomenko V, Raymundo-Piñero E, Béguin F (2008) High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources 177:643–651CrossRefGoogle Scholar
  13. 13.
    Sivakkumar SR, Nerkar JY, Pandolfo AG (2010) Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta 55(9):3330–3335CrossRefGoogle Scholar
  14. 14.
    Sivakkumar SR, Pandolfo AG (2012) Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim Acta 65:280–287CrossRefGoogle Scholar
  15. 15.
    Cao WJ, Zheng JP (2012) Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. J Power Sources 213:180–185CrossRefGoogle Scholar
  16. 16.
    Cao W, Li Y, Fitch B, Shih J, Doung T, Zheng J (2014) Strategies to optimize lithium-ion supercapacitors achieving high-performance: cathode configurations, lithium loadings on anode, and types of separator. J Power Sources 268:841–847CrossRefGoogle Scholar
  17. 17.
    Gourdin G, Smith PH, Jiang T, Tran TN, Qu D (2013) Lithiation of amorphous carbon negative electrode for Li ion capacitor. J Electroanal Chem 688:103–112CrossRefGoogle Scholar
  18. 18.
    Schroeder M, Winter M, Passerini S, Balducci A (2013) On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. J Power Sources 238:388–394CrossRefGoogle Scholar
  19. 19.
    Schroeder M, Menne S, Ségalini J, Saurel D, Casas-Cabanas M, Passerini S, Winter M, Balducci A (2014) Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors. J Power Sources 266:250–258CrossRefGoogle Scholar
  20. 20.
    Yu X, Zhan C, Lv R, Bai Y, Lin Y, Huang Z-H, Shen W, Qiu X, Kang F (2015) Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 15:43–53CrossRefGoogle Scholar
  21. 21.
    Wang X, Shen G (2015) Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 15:104–115CrossRefGoogle Scholar
  22. 22.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  23. 23.
    Galiński M, Acznik I (2012) Study of a graphene-like anode material in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid for Li-ion batteries. J Power Sources 216:5–10CrossRefGoogle Scholar
  24. 24.
    Jagiello J, Olivier JP (2013) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80CrossRefGoogle Scholar
  25. 25.
    Jagiello J, Olivier JP (2013) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19:777–783CrossRefGoogle Scholar
  26. 26.
    Naoi K, Ishimoto S, Miyamoto J, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373CrossRefGoogle Scholar
  27. 27.
    Decaux C, Lota G, Raymundo-Pinero E, Frąckowiak E, Béguin F (2012) Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. Electrochim Acta 86:282–286CrossRefGoogle Scholar
  28. 28.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  29. 29.
    Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3):630–635CrossRefGoogle Scholar
  30. 30.
    Hontoria-Lucas C, López-Peinado AJ, López-González JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592CrossRefGoogle Scholar
  31. 31.
    Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154CrossRefGoogle Scholar
  32. 32.
    Bele S, Samanidou V, Deliyanni E (2016) Effect of the reduction degree of graphene oxide on the adsorption of Bisphenol A. Chem Eng Res Des 109:573–585CrossRefGoogle Scholar
  33. 33.
    Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110(45):22328–22338PubMedCrossRefGoogle Scholar
  34. 34.
    Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023CrossRefGoogle Scholar
  35. 35.
    Seredych M, Tamashausky AV, Bandosz TJ (2010) Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions. Adv Funct Mater 20:1670–1679CrossRefGoogle Scholar
  36. 36.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  37. 37.
    Yazami R, Deschamps M (1995) High reversible capacity carbon-lithium negative electrode in polymer electrolyte. J Power Sources 54:411–415CrossRefGoogle Scholar
  38. 38.
    Frąckowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37:61–69CrossRefGoogle Scholar
  39. 39.
    Yang Z, Wu H (2001) Electrochemical intercalation of lithium into fullerene soot. Mater Lett 50:108–114CrossRefGoogle Scholar
  40. 40.
    Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264(5158):556–558PubMedCrossRefGoogle Scholar
  41. 41.
    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21(14):3136–3142CrossRefGoogle Scholar
  42. 42.
    Konno H, Kasashima T, Azumi K (2009) Application of Si-C-O glass-like compounds as negative electrode materials for lithium hybrid capacitors. J Power Sources 191:623–627CrossRefGoogle Scholar
  43. 43.
    Ren JJ, Su LW, Qin X, Yang M, Wei JP, Zhou Z, Shen PW (2014) Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J Power Sources 264:108–113CrossRefGoogle Scholar
  44. 44.
    Lee JH, Shin WH, Lim SY, Kim BG, Choi JW (2014) Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors. Mater Renew Sustain Energy 3(1):1–8CrossRefGoogle Scholar
  45. 45.
    Zhang T, Zhang F, Zhang L, Lu Y, Zhang Y, Yang X, Ma Y, Huang Y (2015) High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon 92:106–118CrossRefGoogle Scholar
  46. 46.
    Kim H-K, Mhamane D, Kim M-S, Roh H-K, Aravindan V, Madhavi S, Roh KC, Kim K-B (2016) TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J Power Sources 327:171–177CrossRefGoogle Scholar
  47. 47.
    Song H, Fu J, Ding K, Huang C, Wu K, Zhang X, Gao B, Huo K, Peng X, Chu PK (2016) Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J Power Sources 328:599–606CrossRefGoogle Scholar
  48. 48.
    Sun F, Gao J, Liu X, Wang L, Yang Y, Pi X, Wu S, Qin Y (2016) High-energy Li-ion hybrid supercapacitor enabled by a long life N-rich carbon based anode. Electrochim Acta 213:626–632CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of New Technologies for Energy Storage, Institute of Non-Ferrous Metals Division in PoznanCentral Laboratory of Batteries and CellsPoznanPoland

Personalised recommendations