Journal of Solid State Electrochemistry

, Volume 21, Issue 10, pp 2965–2974 | Cite as

Grain-boundary states in solid oxide electrolyte ceramics processed using iron oxide sintering aids: a Mössbauer spectroscopy study

  • E.V. Tsipis
  • J.C. Waerenborgh
  • V.V. Kharton
Original Paper


In order to appraise microstructure-determined defect formation processes and minor intergranular states in the solid electrolyte materials sintered employing transition metal oxide additives, the transmission Mössbauer spectroscopy analysis of Zr0.85Y0.15O2 − δ, Ce0.9Gd0.1O2 − δ, and (La0.9Sr0.1)0.98Ga0.8Mg0.2O3 − δ ceramics containing 2 mol% 57Fe isotope probe was combined with X-ray diffraction and scanning electron microscopy studies. The sintering aids tend to dissolve in yttria-stabilized zirconia and lanthanum gallate where Fe-rich domains, magnetically ordered at 4 K, co-exist with interfacial iron species remaining paramagnetic. For the electrolyte ceramics processed at 1373 K, this dissolution is accompanied with an appearance of insulating phase impurities, such as monoclinic zirconia. On the contrary, low iron solubility in gadolinia-doped ceria leads to the segregation of trace amounts of hematite and perovskite-type GdFeO3 phases, which enhance densification and affect p-type electronic transport. The iron cations incorporated into the fluorite-type cubic zirconia and ceria lattices are predominantly trivalent, with reduced oxygen coordination relative to the host cations, while the Fe4+ states prevailing in the gallate ceramics sintered in air exhibit atypical disproportionation into Fe3+ and Fe5+ even at room temperature.


Solid oxide electrolyte ceramics Mössbauer spectroscopy Sintering aid YSZ LSGM Doped ceria 



Financial support from the Ministry of Education and Science of the Russian Federation (project 14.B25.31.0018), the Russian Foundation for Basic Research (project 14-29-04042), and the FCT, Portugal, is gratefully acknowledged.


  1. 1.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley-Interscience, New York-Chichester-Brisbane-Toronto-SingaporeGoogle Scholar
  2. 2.
    Christie GM, van Berkel FPF (1996) Microstructure - ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ionics 83:17–27CrossRefGoogle Scholar
  3. 3.
    Drennan J, Auchterlonie G (2000) Microstructural aspects of oxygen ion conduction in solids. Solid State Ionics 134:75–87CrossRefGoogle Scholar
  4. 4.
    Kharton VV (ed) (2011) Solid state electrochemistry II: electrodes, interfaces and ceramic membranes. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Kharton VV, Naumovich EN, Vecher AA (1999) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. I. ZrO2-based ceramic materials. J Solid State Electrochem 3:61–81CrossRefGoogle Scholar
  6. 6.
    Jud E, Huwiler CB, Gauckler LJ (2005) J Am Ceram Soc 88:3013–3019CrossRefGoogle Scholar
  7. 7.
    Kleinlogel C, Gauckler LJ (2000) Solid State Ionics 135:567–573CrossRefGoogle Scholar
  8. 8.
    Kleinlogel C, Gauckler LJ (1999) In: Singhal SC, Dokiya M (eds) Solid Oxide Fuel Cells VI, Electrochem Soc Proc vol 99-19, The Electrochemical Society, Pennington, New Jersey, 225–232Google Scholar
  9. 9.
    Zhang TS, Ma J, Kong LB, Chan SH, Hing P, Kilner JA (2004) Solid State Ionics 167:203–207CrossRefGoogle Scholar
  10. 10.
    Zhang TS, Ma J, Kong LB, Zeng ZQ, Hing P, Kilner JA (2003) Mater Sci Eng B 103:177–183CrossRefGoogle Scholar
  11. 11.
    Lewis GS, Atkinson A, Steele BCH (2001) J Mater Sci Lett 20:1155–1157CrossRefGoogle Scholar
  12. 12.
    Morales M, Piñol S, Segarra M (2009) J Power Sources 194:961–966CrossRefGoogle Scholar
  13. 13.
    Zając W, Suescun L, Świerczek K, Molenda J (2009) J Power Sources 194:2–9CrossRefGoogle Scholar
  14. 14.
    Kleinlogel C, Gauckler LJ (2000) J Electroceram 5:231–243CrossRefGoogle Scholar
  15. 15.
    Fagg DP, Kharton VV, Frade JR (2002) p-type electronic transport in Ce0.8Gd0.2O2-δ: The effect of transition metal oxide sintering aids. J Electroceram 9:199–207CrossRefGoogle Scholar
  16. 16.
    Bohac P, Orliukas A, Gauckler L (1994) In: Waser R, Hoffmann S, Bonnenberg D, Hoffmann C (eds) Electroceramics IV, vol II. IWE, University of Technology, Augustinus Buchhandlung, AachenGoogle Scholar
  17. 17.
    Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y (2000) Intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte II. Improvement of oxide ion conductivity and power density by doping Fe for Ga Site of LaGaO3. J Electrochem Soc 147:1332–1337CrossRefGoogle Scholar
  18. 18.
    Ishihara T, Akbay T, Furutani H, Takita Y (1998) Improved oxide ion conductivity of Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite type oxide. Solid State Ionics 113–115:585–591CrossRefGoogle Scholar
  19. 19.
    Kharton VV, Viskup AP, Yaremchenko AA, Baker RT, Gharbage B, Mather GC, Figueiredo FM, Naumovich EN, Marques FMB (2000) Ionic conductivity of La(Sr)Ga(Mg,M)O3−δ (M=Ti, Cr, Fe, Co, Ni): effects of transition metal dopants. Solid State Ionics 132:119–130CrossRefGoogle Scholar
  20. 20.
    Fagg DP, Kharton VV, Frade JR (2004) Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics. J Solid State Electrochem 8:618–625CrossRefGoogle Scholar
  21. 21.
    Kharton VV, Kovalevsky AV, Patrakeev MV, Tsipis EV, Viskup AP, Kolotygin VA, Yaremchenko AA, Shaula AL, Kiselev EA, Waerenborgh JC (2008) Oxygen nonstoichiometry, mixed conductivity and Mössbauer spectra of Ln0.5A0.5FeO3−δ (Ln = La-Sm, A = Sr, Ba): Effects of cation size. Chem Mater 20:6457–6467CrossRefGoogle Scholar
  22. 22.
    Štefanić G, Gržeta B, Nomura K, Trojko R, Musić S (2001) The influence of thermal treatment on phase development in ZrO2–Fe2O3 and HfO2– Fe2O3 systems. J All Compd 327:151–160CrossRefGoogle Scholar
  23. 23.
    Belous AG, Pashkova EV, Kravchyk KV, Ivanitskii VP, V’yunov OI (2008) Mössbauer and X-ray diffraction studies of cubic solid solutions of the ZrO2-Y2O3-Fe2O3 system. J Phys Chem C 112:3914–3919CrossRefGoogle Scholar
  24. 24.
    Garcia FL, de Resende VG, De Grave E, Peigney A, Barnabé A, Laurent C (2009) Iron-stabilized nanocrystalline ZrO2 solid solutions: Synthesis by combustion and thermal stability. Mater Res Bull 44:1301–1311CrossRefGoogle Scholar
  25. 25.
    Sahoo TR, Manoharan S, Kurian S, Gajbhiye NS (2009) Mössbauer spectroscopic study of iron-doped zirconia synthesized by microwave route. Hyperfine Interact 188:43–49CrossRefGoogle Scholar
  26. 26.
    Li P, Chen I-W, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization-an X-ray absorption study: I, trivalent dopants. J Am Ceram Soc 77:118–128CrossRefGoogle Scholar
  27. 27.
    Greenwood NN, Gibb TC (1971) Mossbauer spectroscopy. Chapman and Hall, LondonCrossRefGoogle Scholar
  28. 28.
    Murad E, Johnston JH (1987) In: Long GJ (ed) Mossbauer spectroscopy applied to inorganic chemistry, vol 2. Plenum Press, New YorkGoogle Scholar
  29. 29.
    Navío JA, Hidalgo MC, Colón G, Botta SG, Litter MI (2001) Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique. Langmuir 17:202–210CrossRefGoogle Scholar
  30. 30.
    Musić S, Ilakovac V, Ristić M, Popović S (1992) Formation of oxide phases in the system Fe2O3-Gd2O3. J Mater Sci 27:1011–1015CrossRefGoogle Scholar
  31. 31.
    Pérez-Alonso FJ, López Granados M, Ojeda M, Terreros P, Rojas S, Herranz T, Fierro JLG (2005) Chemical structures of coprecipitated Fe-Ce mixed oxides. Chem Mater 17:2329–2339CrossRefGoogle Scholar
  32. 32.
    Pérez-Alonso FJ, López Granados M, Ojeda M, Terreros P, Rojas S, Herranz T, Fierro JLG, Gracia M, Gancedo JR (2006) Relevance in the Fischer-Tropsch synthesis of the formation of Fe-O-Ce interactions on iron-cerium mixed oxide systems. J Phys Chem B 110:23870–23880CrossRefGoogle Scholar
  33. 33.
    Sahoo SK, Mohapatra M, Pandey B, Verma HC, Das RP, Anand S (2009) Preparation and characterization of α-Fe2O3–CeO2 composite. Mater Character 60:425–431CrossRefGoogle Scholar
  34. 34.
    Berenov A, Angeles E, Rossiny J, Raj E, Kilner J, Atkinson A (2008) Structure and transport in rare-earth ferrates. Solid State Ionics 179:1090–1093CrossRefGoogle Scholar
  35. 35.
    Takeda Y, Ueno H, Imanishi N, Yamamoto O, Sammes N, Phillipps MB (1996) Gd1-xSrxCoO3 for the electrode of solid oxide fuel cells. Solid State Ionics 86-88:1187–1190CrossRefGoogle Scholar
  36. 36.
    George AM, Gopalakrishnan IK, Karkhanavala MD (1974) Electrical conductivity of Ln2CuO4 compounds. Mater Res Bull 9:721–726CrossRefGoogle Scholar
  37. 37.
    Kharton VV, Shaula AL, Vyshatko NP, Marques FMB (2003) Electron-hole transport in (La0.9Sr0.1)0.98Ga0.8Mg0.2O3-δ electrolyte: effects of ceramic microstructure. Electrochim Acta 48:1817–1828CrossRefGoogle Scholar
  38. 38.
    Kharton VV, Shaulo AL, Viskup AP, Avdeev MY, Yaremchenko AA, Patrakeev MV, Kurbakov AI, Naumovich EN, Marques FMB (2002) Perovskite-like system (Sr,La)(Fe,Ga)O3-δ: structure and ionic transport under oxidizing conditions. Solid State Ionics 150:229–243CrossRefGoogle Scholar
  39. 39.
    Galenda A, Natile MM, Nodari L, Glisenti A (2010) La0.8Sr0.2Ga0.8Fe0.2O3-δ: Influence of the preparation procedure on reactivity toward methanol and ethanol. Appl Catal B 97:307–322CrossRefGoogle Scholar
  40. 40.
    Battle PD, Gibb TC, Nixon S (1988) A Study of Charge Disproportionation in the nonstoichiometric perovskite Sr2LaFe3O8+y, by Mössbauer spectroscopy. J Solid State Chem 77:124–131CrossRefGoogle Scholar
  41. 41.
    Świerczek K, Marzec J, Pałubiak D, Zając W, Molenda J (2006) LFN and LSCFN perovskites — structure and transport properties. Solid State Ionics 177:1811–1817CrossRefGoogle Scholar
  42. 42.
    Patrakeev MV, Mitberg EB, Lakhtin AA, Leonidov IA, Kozhevnikov VL, Kharton VV, Avdeev M, Marques FMB (2002) Oxygen nonstoichiometry, conductivity and Seebeck coefficient of La0.3Sr0.7Fe1-xGaxO2.65+δ perovskites. J Solid State Chem 167:203–213CrossRefGoogle Scholar
  43. 43.
    Patrakeev MV, Kharton VV, Bakhteeva YA, Shaula AL, Leonidov IA, Kozhevnikov VL, Naumovich EN, Yaremchenko AA, Marques FMB (2006) Oxygen nonstoichiometry and mixed conductivity of SrFe1-xMxO3-δ (M= Al, Ga): effects of B-site doping. Solid State Sci 8:476–487CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centre for Mechanical Technology and Automation, Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal
  2. 2.Centro de Ciências e Tecnologias Nucleares, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
  3. 3.Institute of Solid State Physics RASChernogolovka, Moscow DistrictRussia

Personalised recommendations