Journal of Solid State Electrochemistry

, Volume 21, Issue 8, pp 2259–2267 | Cite as

High-capacity nano-Si@SiOx@C anode composites for lithium-ion batteries with good cyclic stability

  • Ju Zhang
  • Jingwei Gu
  • Hongyan He
  • Mingqi LiEmail author
Original Paper


To suppress the volume change of silicon and enhance the conductivity of the electrodes, nano-Si@SiOx@C composites with different carbon content are synthesized, in which nano-Si is embedded in SiOx matrix and coated by pyrolyzed C. Among the as-prepared composites, nano-Si@SiOx@22.45 wt%C exhibits the best comprehensive electrochemical performance, which delivers a first reversible capacity of 1184 mAh g−1 with capacity retention of 93% after 150 cycles at 100 mA g−1. Moreover, it also shows good rate capability. The excellent electrochemical performance is attributed to the special structure and rational composition of the composite, in which the combination of a modest amount of coating carbon and SiOx matrix not only effectively mitigates the volume effect of nano-Si particles but also guarantees a high reversible capacity.


Nano-silicon@silicon suboxide@carbon Lithium-ion battery Anode Electrochemical performance 



This research was financially supported by Lithium-ion Battery Innovative Team Project of China West Normal University (No. CXTD2015-1), Natural Science Foundation of China (No. 51374175), and Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Sichuan Province (No. 201505).

Supplementary material

10008_2017_3578_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1182 kb).


  1. 1.
    Aravindan V, Lee Y, Madhavi S (2015) Adv Energy Mater. doi: 10.1002/aenm.201402225 Google Scholar
  2. 2.
    Myung S, Amine K, Sun Y (2015) J Power Sources 283:219–236CrossRefGoogle Scholar
  3. 3.
    Kasavajjula U, Wang C, Appleby AJ (2007) J Power Sources 163:1003–1039CrossRefGoogle Scholar
  4. 4.
    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) J Power Sources 257:421–443CrossRefGoogle Scholar
  5. 5.
    Mi H, Li F, He C, Chai X, Zhang Q, Li C, Li Y, Liu J (2016) Electrochim Acta 190:1032–1040CrossRefGoogle Scholar
  6. 6.
    Ren W, Wang Y, Zhang Z, Tan Q, Zhong Z, Su F (2016) J Mater Chem A 4:552–560CrossRefGoogle Scholar
  7. 7.
    Li X, Yan C, Wang J, Graff A, Schweizer SL, Sprafke A, Schmidt OG, Wehrspohn RB (2015) Adv Energy Mater. doi: 10.1002/aenm.201401556 Google Scholar
  8. 8.
    Song H, Wang HX, Lin Z, Jiang X, Yu L, Xu J, Yu Z, Zhang X, Liu Y, He P, Pan L, Shi Y, Zhou H, Chen K (2016) Adv Funct Mater 26:524–531CrossRefGoogle Scholar
  9. 9.
    Grinbom G, Duveau D, Gershinsky G, Monconduit L, Zitoun D (2015) Chem Mater 27:2703–2710CrossRefGoogle Scholar
  10. 10.
    Song Y, Zuo L, Chen S, Wu J, Hou H, Wang L (2015) Electrochim Acta 173:588–594CrossRefGoogle Scholar
  11. 11.
    Zhong L, Guo J, Mangolini L (2015) J Power Sources 273:638–644CrossRefGoogle Scholar
  12. 12.
    Bridel J, Azaïs T, Morcrette M, Tarascon J, Larcher D (2011) J Electrochem Soc 158:A750–A759CrossRefGoogle Scholar
  13. 13.
    Dalavi S, Guduru P, Lucht BL (2012) J Electrochem Soc 159:A642–A646CrossRefGoogle Scholar
  14. 14.
    Yuan Q, Zhao F, Zhao Y, Liang Z, Yan D (2014) Electrochim Acta 115:16–21CrossRefGoogle Scholar
  15. 15.
    Wang D, Gao M, Pan H, Wang J, Liu Y (2014) J Power Sources 256:190–199CrossRefGoogle Scholar
  16. 16.
    Yoo S, Lee J, Shin M, Park S (2013) ChemSusChem 6:1153–1157CrossRefGoogle Scholar
  17. 17.
    Lee DJ, Ryou M, Lee J, Kim BG, Lee YM, Kim H, Kong B, Park J, Choi JW (2013) Electrochem Commun 34:98–101CrossRefGoogle Scholar
  18. 18.
    Lu Z, Zhang L, Liu X (2010) J Power Sources 195:4304–4307CrossRefGoogle Scholar
  19. 19.
    Yamada Y, Iriyama Y, Abe T, Ogumi Z (2010) J Electrochem Soc 157:A26–A30CrossRefGoogle Scholar
  20. 20.
    Morita T, Takami N (2006) J Electrochem Soc 153:A425–A430CrossRefGoogle Scholar
  21. 21.
    Doh CH, Shin HM, Kim DH, Ha YC, Jin BS, Kim HS, Moon SI, Veluchamy A (2008) Electrochem Commun 10:233–237CrossRefGoogle Scholar
  22. 22.
    Chao YJ, Yuan X, Ma ZF (2008) Electrochim Acta 53:3468–3473CrossRefGoogle Scholar
  23. 23.
    Jeong G, Kim J, Kim Y, Kim Y (2012) J Mater Chem 22:7999–8004CrossRefGoogle Scholar
  24. 24.
    Park C, Choi W, Hwa Y, Kim J, Jeong G, Sohn H (2010) J Mater Chem 20:4854–4860CrossRefGoogle Scholar
  25. 25.
    Kim JH, Sohn HJ, Kim H, Jeong G, Choi W (2007) J Power Sources 170:456–459CrossRefGoogle Scholar
  26. 26.
    Si Q, Hanai K, Ichikawa T, Phillipps MB, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) J Power Sources 196:9774–9779CrossRefGoogle Scholar
  27. 27.
    Lee JK, Yoon WY, Kim BK (2013) J Electrochem Soc 160:A1348–A1352CrossRefGoogle Scholar
  28. 28.
    Lee JK, Oh C, Kim N, Hwang J, Sun Y (2016) J Mater Chem A 4:5366–5384CrossRefGoogle Scholar
  29. 29.
    Gu J, Zeng Y, Feng X, Wu X, Zeng C, Li M (2016) J Alloy Compd 662:185–192CrossRefGoogle Scholar
  30. 30.
    Yoo S, Kim J, Kang B (2016) Electrochim Acta 212:68–75CrossRefGoogle Scholar
  31. 31.
    Groen JC, Peffer LAA, Pérez-Ramırez J (2003) Micropor Mesopor Mat 60:1–17CrossRefGoogle Scholar
  32. 32.
    Chen Y, Liu L, Xiong J, Yang T, Qin Y, Yan C (2015) Adv Funct Mater 25:6701–6709CrossRefGoogle Scholar
  33. 33.
    Zhou X, Yin Y, Wan L, Guo Y (2012) Adv Energy Mater 2:1086–1090CrossRefGoogle Scholar
  34. 34.
    Yu B, Hwa Y, Park C, Sohn H (2013) J Mater Chem A 1:4820–4825CrossRefGoogle Scholar
  35. 35.
    Gomez JL, Morales J, Sanchez L (2008) Electrochem Solid-State Lett 11:A101–A104CrossRefGoogle Scholar
  36. 36.
    Guo J, Sun A, Chen X, Wang C, Manivannan A (2011) Electrochim Acta 56:3981–3987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringChina West Normal UniversityNanchongChina
  2. 2.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceNanchongChina

Personalised recommendations