Journal of Solid State Electrochemistry

, Volume 21, Issue 8, pp 2393–2405 | Cite as

Electrochemical supercapacitive performance of potentiostatically cathodic electrodeposited nanostructured MnO2 films

Original Paper
  • 209 Downloads

Abstract

Nanostructured MnO2 films were prepared via cathodic electrodeposition under potentiostatic condition. X-ray diffraction (XRD) analyses reveal that the deposited films possess the hexagonal phase of epsilon manganese dioxide (ε-MnO2). Fourier transform infrared (FTIR) spectroscopy studies also confirm the manganese dioxide phase of the deposited films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies show that the film deposited at the potential of 0.2 V has a porous network structure which is made of sparsely distributed grains. Cyclic voltammetry studies show the maximum specific capacitance to be 259.4 F/g at the scan rate of 5 mV/s for the film deposited at the potential of 0.2 V, while the chrono charge-discharge measurements on the film exhibit the maximum specific capacitance to be 325.6 F/g at the current density of 1 mA/cm2. The variation in specific capacitance values of the films deposited at different potentials is attributed to different morphologies of the films.

Keywords

Nanostructured films Cathodic electrodeposition Manganese dioxide Supercapacitors 

References

  1. 1.
    Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New YorkGoogle Scholar
  2. 2.
    Martin W, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104:4245–4269CrossRefGoogle Scholar
  3. 3.
    Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  4. 4.
    Patrice S, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  5. 5.
    Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50CrossRefGoogle Scholar
  6. 6.
    Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRefGoogle Scholar
  7. 7.
    Sarangapani S, Tilak BV, Chen C-P (1996) Materials for electrochemical capacitors: theoretical and experimental constraints. J Electrochem Soc 143:3791–3799CrossRefGoogle Scholar
  8. 8.
    Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar
  9. 9.
    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300CrossRefGoogle Scholar
  10. 10.
    Ishikawa M, Morita M, Ihara M, Matsuda Y (1994) Electric double-layer capacitor composed of activated carbon fiber cloth electrodes and solid polymer electrolytes containing alkyl ammonium salts. J Electrochem Soc 141:1730–1734CrossRefGoogle Scholar
  11. 11.
    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRefGoogle Scholar
  12. 12.
    Okajima K, Ikeda A, Kamoshita K, Sudoh M (2005) High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim Acta 51:972–977CrossRefGoogle Scholar
  13. 13.
    Jureviciute I, Bruckenstein S (2003) Electrochemical activity of chemically deposited polypyrrole films. J Solid State Electrochem 7:554–560CrossRefGoogle Scholar
  14. 14.
    Mi H, Zhang X, Yang S, Ye X, Luo J (2008) Polyaniline nanofibers as the electrode material for supercapacitors. Mater Chem Phys 112:127–131CrossRefGoogle Scholar
  15. 15.
    Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498CrossRefGoogle Scholar
  16. 16.
    Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl)thiophene) in pure ionic liquids. J Phys Chem B 106:10585–10593CrossRefGoogle Scholar
  17. 17.
    Tripathi SK, Kumar A, Hashmi SA (2006) Electrochemical redox supercapacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode. Solid State Ionics 177:2979–2985CrossRefGoogle Scholar
  18. 18.
    Zhao Y-Q, Zhang G-Q, Li H-L (2006) Electrochemical characterization on layered lithium ruthenate for electrochemical supercapacitors. Solid State Ionics 177:1335–1339CrossRefGoogle Scholar
  19. 19.
    Jones DJ, Wortham E, Rozieˋre J, Favier F, Pascal J-L, Monconduit L (2004) Manganese oxide nanocomposites: preparation and some electrochemical properties. J Phys Chem Solids 65:235–239CrossRefGoogle Scholar
  20. 20.
    Nathan T, Aziz A, Noor AF, Prabaharan SRS (2007) Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J Solid State Electrochem 12:1003–1009CrossRefGoogle Scholar
  21. 21.
    Wang GX, Chen Y, Konstantinov K, Yao J, J-ho A, Liu HK, Dou SX (2002) Nanosize cobalt oxides as anode materials for lithium-ion batteries. J Alloys Compd 340:L5–L10CrossRefGoogle Scholar
  22. 22.
    Qu QT, Shi Y, Li LL, Guo WL, Wu YP, Zhang HP, Guan SY, Holze R (2009) V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 11:1325–1328CrossRefGoogle Scholar
  23. 23.
    Li Y, Chang S, Liu X, Huang J, Yin J, Wang G, Cao D (2012) Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 85:393–398CrossRefGoogle Scholar
  24. 24.
    Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703CrossRefGoogle Scholar
  25. 25.
    Broughton JN, Brett MJ (2005) Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochim Acta 50:4814–4819CrossRefGoogle Scholar
  26. 26.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423CrossRefGoogle Scholar
  27. 27.
    Chang J-K, Chen Y-L, Tsai W-T (2004) Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition. J Power Sources 135:344–353CrossRefGoogle Scholar
  28. 28.
    Prasad KR, Miura N (2004) Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J Power Sources 135:354–360CrossRefGoogle Scholar
  29. 29.
    Pang S-C, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147:444–450CrossRefGoogle Scholar
  30. 30.
    Shinomiya T, Gupta V, Miura N (2006) Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim Acta 51:4412–4419CrossRefGoogle Scholar
  31. 31.
    Srinivasan V, Weidner JW (1997) An electrochemical route for making porous nickel oxide electrochemical capacitors. J Electrochem Soc 144:L210–L213CrossRefGoogle Scholar
  32. 32.
    Yousefi T, Davarkhah R, Golikand AN, Mashhadizadeh MH (2013) Synthesis, characterization, and supercapacitor studies of manganese (IV) oxide nanowires. Mater Sci Semicond Process 16:868–876CrossRefGoogle Scholar
  33. 33.
    Weia J, Cheonga M, Nagarajana N, Zhitomirskya I (2007) Cathodic electrodeposition of manganese oxides for electrochemical supercapacitors. ECS Trans 3:1–9CrossRefGoogle Scholar
  34. 34.
    Li J, Zhitomirsky I (2009) Cathodic electrophoretic deposition of manganese dioxide films. Colloids and Surfaces A: Physicochem Eng Aspects 348:248–253CrossRefGoogle Scholar
  35. 35.
    Hassan S, Suzuki M, El-Moneim AA (2012) Capacitive behavior of manganese dioxide/stainless steel electrodes at different deposition currents. American Journal of Materials Science 2:11–14CrossRefGoogle Scholar
  36. 36.
    Ali GAM, Yusoff MM, Ng YH, Lim HN, Chong KF (2015) Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: a comparison study. Curr Appl Phys 15:1143–1147CrossRefGoogle Scholar
  37. 37.
    Yuqiu H, Hongcheng Z (2011) Cathodic potentiostatic electrodeposition and capacitance characterization of manganese dioxide film. International Conference on Nanotechnology and Biosensors IPCBEE, vol 2. IACSIT Press, SingaporeGoogle Scholar
  38. 38.
    Reddy RN, Reddy RG (2004) Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J Power Sources 132:315–320CrossRefGoogle Scholar
  39. 39.
    Zhang L, Gong H (2015) Improvement in flexibility and volumetric performance for supercapacitor application and the effect of Ni–Fe ratio on electrode behaviour. J Mater Chem A 3:7607–7615CrossRefGoogle Scholar
  40. 40.
    Pourbaix M (1996) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, HoustonGoogle Scholar
  41. 41.
    Jacob GM, Zhitomirsky I (2008) Microstructure and properties of manganese dioxide films prepared by electrodeposition. Appl Surf Sci 254:6671–6676CrossRefGoogle Scholar
  42. 42.
    Xiao W, Xia H, Fuh J-Y-H LL (2009) Electrochemical synthesis and supercapacitive properties of ε-MnO2 with porous/nanoflaky hierarchical architectures. J Electrochem Soc 156:A627–A633CrossRefGoogle Scholar
  43. 43.
    Zou R, Yuen MF, Zhang Z, Hu J, Zhang W (2015) Three-dimensional networked NiCo2O4/MnO2 branched nanowire heterostructure arrays on nickel foam with enhanced supercapacitor performance. J Mater Chem A 3:1717–1723CrossRefGoogle Scholar
  44. 44.
    Bricker O (1965) Some stability relations in the system Mn–O2–H2O at 25° and one atmosphere total pressure. Am Mineral 50:1296–1354Google Scholar
  45. 45.
    Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223CrossRefGoogle Scholar
  46. 46.
    Ragupathy P, Vasan HN, Munichandraiah N (2008) Synthesis and characterization of nano- MnO2 for electrochemical supercapacitor studies. J Electrochem Soc 155:A34–A40CrossRefGoogle Scholar
  47. 47.
    Kuo S-L, Wu N-L (2006) Investigation of pseudocapacitive charge-storage reaction of MnO2 ∙ nH2O supercapacitors in aqueous electrolytes. J Electrochem Soc 153:A1317–A1324CrossRefGoogle Scholar
  48. 48.
    Tran VM, Ha AT, Le MLP (2014) Capacitance behavior of nanostructured ε-MnO2/C composite electrode using different carbons matrix. Adv Nat Sci Nanosci Nanotechnol 5:025005 (9pp)CrossRefGoogle Scholar
  49. 49.
    Minakshi M, Singh P, Issa TB, Thurgate S, Marco RD (2004) Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery part II. Comparison of the behavior of EMD and battery grade MnO2 in Zn|MnO2|aqueous LiOH electrolyte. J Power Sources 138:319–322CrossRefGoogle Scholar
  50. 50.
    Pagnanelli F, Sambenedetto C, Furlani G, Veglio F, Toro L (2007) Preparation and characterisation of chemical manganese dioxide: effect of the operating conditions. J Power Sources 16:567–577CrossRefGoogle Scholar
  51. 51.
    Adelkhani H, Ghaemi M, Jafari SM (2008) Novel nanostructured MnO2 prepared by pulse electrodeposition: characterization and electrokinetics. J Mater Sci Technol 24:857–862Google Scholar
  52. 52.
    Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: part I. Periodic structures. Spectrochim Acta A 60:689–700CrossRefGoogle Scholar
  53. 53.
    Jiang Y, Cui X, Zu L, Hu Z, Gan J, Lian H, Liu Y, Xing G (2015) High rate performance nanocomposite electrode of mesoporous manganese dioxide/silver nanowires in KI electrolytes. Nano 5:1638–1653Google Scholar
  54. 54.
    Dubal DP, Kim WB, Lokhande CD (2011) Surfactant assisted electrodeposition of MnO2 thin films: improved supercapacitive properties. J Alloys Compd 509:10050–10054CrossRefGoogle Scholar
  55. 55.
    Zhang Y, Li G-Y, Lv Y, Wang L-Z, Zhang A-Q, Song Y-H, Huang B-L (2011) Electrochemical investigation of MnO2 electrode material for supercapacitors. Int J Hydrog Energy 36:11760–11766CrossRefGoogle Scholar
  56. 56.
    Dubal DP, Kim WB, Lokhande CD (2012) Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. J Phys Chem Solids 73:18–24CrossRefGoogle Scholar
  57. 57.
    Jana SK, Rao VP, Banerjee S (2014) Enhancement of supercapacitance property of electrochemically deposited MnO2 thin films grown in acidic medium. Chem Phys Lett 593:160–164CrossRefGoogle Scholar
  58. 58.
    Devaraj S, Munichandraiah N (2007) The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties. J Electrochem Soc 154:A901–A909CrossRefGoogle Scholar
  59. 59.
    Bastidas JM, Polo JL, Cano E, Torres CL, Mora N (2000) Localised corrosion of highly alloyed stainless steels in an ammonium chloride and diethylamine chloride aqueous solution. Mater Corros 51:712–718CrossRefGoogle Scholar
  60. 60.
    Silverman DC (1989) Corrosion rate estimation from pseudo-inductive electrochemical impedance response. Corrosion 45:824–830CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  2. 2.Department of Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations