Journal of Solid State Electrochemistry

, Volume 21, Issue 9, pp 2567–2576 | Cite as

Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications

  • Assumpta C Nwanya
  • Daniel Obi
  • Rose U. Osuji
  • R. Bucher
  • Malik Maaza
  • Fabian I. Ezema
Original Paper


We used a simple chemical synthesis route to deposit nanorod-like cobalt oxide thin films on different substrates such as stainless steel (ss), indium tin oxide (ITO), and microscopic glass slides. The morphology of the films show that the films were uniformly spread having a nanorod-like structure with the length of the nanorods shortened on ss substrates. The electrochemical properties of the films deposited at different time intervals were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The film deposited after 20 cycles on ss gave the highest specific capacity of 67.6 mAh g−1 and volumetric capacity of 123 mAh cm−3 at a scan rate 5 mV s−1 in comparison to 62.0 mAh g−1 and 113 mAh cm−3 obtained, respectively, for its counterpart on ITO. The film electrode deposited after 20 cycles on ITO gave the best rate capability and excellent cyclability with no depreciation after 2000 charge–discharge cycles.


Cobalt oxide Specific capacitance Nanorod-like SILAR Stainless steel 



The UNN group thanks the US Army Research Laboratory for the financial support given to this research (under Contract number W911NF-12-1-0588). The UNN Research Group is also grateful for the financial support given by Engr Emeka Okwuosa the MD Oilserv Group Of Companies Ltd. and for sponsoring her Nano conferences of 2014 and 2016.


  1. 1.
    Xu R, Wang J, Li Q, Sun G, Wang E, Li S, Gu J, Ju M (2009) Porous cobalt oxide (Co3O4) nanorods: facile syntheses, optical property and application in lithium-ion batteries. J Solid State Chem 182:3177–3182CrossRefGoogle Scholar
  2. 2.
    Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan HJ (2014) Solution synthesis of metal oxides for electrochemical energy storage application. Nanoscale 6:5008–5048CrossRefGoogle Scholar
  3. 3.
    Faraji S, Ani FN (2014) Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors: a review. J Power Sources 26:338–360CrossRefGoogle Scholar
  4. 4.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  5. 5.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRefGoogle Scholar
  6. 6.
    Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl Mater Interfaces 6:680–690CrossRefGoogle Scholar
  7. 7.
    Reddy MV, Beichen Z, Loh KP, Chowdari BVR (2013) Facile synthesis of Co3O4 by molten salt method and its Li-storage performance. CrystEngComm 15:3568–3574CrossRefGoogle Scholar
  8. 8.
    Jagadale AD, Kumbhar VS, Bulakhe RN, Lokhande CD (2014) Influence of electrodeposition modes on the super capacitive performance of Co3O4 electrodes. Energy 64:234–241CrossRefGoogle Scholar
  9. 9.
    Srinivasan V, Weidner JW (2002) Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J Power Sources 108:15–20CrossRefGoogle Scholar
  10. 10.
    Kapica R, Redzynia W, Kozanecki M, Chehimi MM, Sielski J, Kuberski SM, Tyczkowski J (2013) Plasma deposition and characterization of copper-doped cobalt oxide nanocatalysts. MATER SCI MEDZG 19(3):270–276Google Scholar
  11. 11.
    Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim Acta 56(2):732–736CrossRefGoogle Scholar
  12. 12.
    Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213CrossRefGoogle Scholar
  13. 13.
    Hao W, Chen S, Cai Y, Zhang L, Li Z, Zhang S (2014) Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J Mater Chem A 2:13801–13804CrossRefGoogle Scholar
  14. 14.
    Yanguang L, Bing T, Yiying W (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270CrossRefGoogle Scholar
  15. 15.
    Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy JF (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4:4315CrossRefGoogle Scholar
  16. 16.
    Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 4:797–828CrossRefGoogle Scholar
  17. 17.
    Jagadale AD, Kumbhar VS, Lokhande CD (2013) Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. J Colloid Interface Sci 406:225–230CrossRefGoogle Scholar
  18. 18.
    Amria A, Duan XF, Yin C-Y, Jiang Z-T, Rahman MM, Pryor T (2013) Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies. Appl Surf Sci 275:127–135CrossRefGoogle Scholar
  19. 19.
    Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO (1 0 0), Co3O4 (1 1 0), and Co3O4 (1 1 1) with oxygen and water. J Mol Catal A Chem 281(1–2):49–58CrossRefGoogle Scholar
  20. 20.
    Spataru N, Terashima C, Tokuhiro K, Sutanto I, Tryk DA, Park S-M, Fujishima A (2003) Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes. J Electrochem Soc 150(7):E337–E341CrossRefGoogle Scholar
  21. 21.
    Shaikh JS, Pawar RC, Moholkar AV, Kim JH, Patil PS (2011) CuO–PAA hybrid films: chemical synthesis and supercapacitor behaviour. Appl Surf Sci 257(9):4389–4397CrossRefGoogle Scholar
  22. 22.
    Nwanya AC, Obi D, Ozoemena KI, Osuji RU, Awada C, Ruediger A, Maaza M, Rosei F, Ezema FI (2016) Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode. Electrochim Acta 198:220–230CrossRefGoogle Scholar
  23. 23.
    Aldama I, Barranco V, Centeno TA, Ibanez J, Rojo JM (2016) Composite electrodes made from carbon cloth as supercapacitor material and manganese and cobalt oxide as battery one. J Electrochem Soc 163(5):A758–A765CrossRefGoogle Scholar
  24. 24.
    Nwanya AC, Offiah SU, Amaechi CI, Agbo S, Ezugwu SC, Sone BT, Osuji RU, Maaza M, Ezema FI (2015) Electrochromic and electrochemical supercapacitive properties of room temperature PVP capped Ni(OH)2/NiO thin films. Electrochimic Acta 171:128–141CrossRefGoogle Scholar
  25. 25.
    Chougule MA, Pawar SG, Godse PR, Sakhare RD, Sen S, Patil VB (2012) Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties. J Mater Sci Mater Electron 23:772–778CrossRefGoogle Scholar
  26. 26.
    Chidembo AT, Ozoemena KI, Agboola BO, Gupta V, Wildgoose GG, Compton RG (2010) Nickel(II) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy Environ Sci 3:228–236CrossRefGoogle Scholar
  27. 27.
    Ko Y, Shin D, Koo B, Lee SW, Yoon W-S, Cho J (2015) Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent bonding between pseudocapacitive nanoparticles and conducting materials. Nano Energy 12:612–625CrossRefGoogle Scholar
  28. 28.
    Amaechi IC, Nwanya AC, Obi D, Ezugwu SC, Udounwa AE, Ekwealor ABC, Osuji RU, Maaza M, Ezema FI (2016) Structural characterization and electrochemical properties of cerium–vanadium (Ce–V) mixed oxide films synthesized by chemical route. Ceram Int 42:3518–3524CrossRefGoogle Scholar
  29. 29.
    Qu QT, Wang B, Yang LC, Shi Y, Tian S, Wu YP (2008) Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochem Commun 10:1652–1655CrossRefGoogle Scholar
  30. 30.
    Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD (2013) Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. Electrochim Acta 92:205–215CrossRefGoogle Scholar
  31. 31.
    Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044–3052CrossRefGoogle Scholar
  32. 32.
    Raju K, Ozoemena KI (2015) Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci Rep 5:17629CrossRefGoogle Scholar
  33. 33.
    Nwanya AC, Amaechi CI, Udounwa AE, Osuji RU, Maaza M, Ezema FI (2015) Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes. Appl Phys A Mater Sci Process 119:387–396CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Nigeria NsukkaNsukkaNigeria
  2. 2.INRS Centre for Energy, Materials and Telecommunications and UNESCO Chair in Materials and Technologies for Energy Conversion, Saving and StorageQCCanada
  3. 3.Nanosciences African Network (NANOAFNET), iThemba LABS-National ResearchCape TownSouth Africa
  4. 4.UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate StudiesUniversity of South Africa (UNISA)PretoriaSouth Africa

Personalised recommendations