Advertisement

Journal of Solid State Electrochemistry

, Volume 21, Issue 5, pp 1243–1251 | Cite as

Study of all solid-state rechargeable fluoride ion batteries based on thin-film electrolyte

  • Le ZhangEmail author
  • Munnangi Anji Reddy
  • Ping Gao
  • Thomas Diemant
  • R. Jürgen Behm
  • Maximilian Fichtner
Original Paper

Abstract

In this work, a solid-state fluoride ion battery based on a thin-film electrolyte with 10 μm thickness was built and tested. The electrochemical performance was examined using Bi or Cu metals as the active cathode materials and MgF2 as the active anode material, respectively. X-ray diffraction and X-ray photoelectron spectroscopy data showed that the charge transfer ions between the cathode and anode were fluoride ions. Initial discharge capacities of 66 and 76 mAh g−1 were obtained at 160 °C when Bi and Cu were used as cathodes, respectively. Furthermore, this type of fluoride ion battery was rechargeable, but the capacity faded during the subsequent cycles, similar to the bulk-type systems.

Keywords

Fluoride ion battery Thin-film electrolyte All solid-state battery Spin-coating technique 

Notes

Acknowledgements

Financial support by China Scholarship Council (CSC) is gratefully acknowledged.

References

  1. 1.
    Mohtadi R, Matsui M, Auther TS, Hwang SJ (2012) Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed 51:9780–9783CrossRefGoogle Scholar
  2. 2.
    Zhao X, Li Q, Zhao-Karger Z, Gao P, Fink K, Shen X, Fichtner M (2014) Magnesium anode for chloride ion batteries. ACS Appl Mater Interfaces 6:10997–11000CrossRefGoogle Scholar
  3. 3.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  4. 4.
    Hasa I, Buchholz D, Passerini S, Scrosati B, Sassoun J (2014) High performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries. Adv Energy Mater 4:1400083/1–1400083/7CrossRefGoogle Scholar
  5. 5.
    Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm RJ, Fichtner M (2015) Magnesium sulfur battery with improved non-nucleophilic electrolyte. Adv Energy Mater 5:1401155/1–1401155/9CrossRefGoogle Scholar
  6. 6.
    Lin MC, Gong M, Lu BG, Wu YP, Wang DY, Guan MY, Angell M, Chen CX, Yang J, Hwang BJ, Dai HJ (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:324–328CrossRefGoogle Scholar
  7. 7.
    Wang Z, Wu Z, Bramnik N, Mitra S (2014) Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator. Adv Mater 26:970–976CrossRefGoogle Scholar
  8. 8.
    Reddy MA, Fichtner M (2011) Batteries based on fluoride shuttle. J Mater Chem 21:17059–17062CrossRefGoogle Scholar
  9. 9.
    Gschwind F, Zhao-Karger Z, Fichtner M (2014) A fluoride-doped PEG matrix as an electrolyte for anion transportation in a room-temperature fluoride ion battery. J Mater Chem 2:1214–1218CrossRefGoogle Scholar
  10. 10.
    Gschwind F, Bastien J (2015) Parametric investigation of room-temperature fluoride-ion batteries: assessment of electrolytes, Mg-based anodes, and BiF3-cathodes. J Mater Chem 3:5628–5634CrossRefGoogle Scholar
  11. 11.
    Rongeat C, Reddy MA, Witter R, Fichtner M (2013) Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J Phys Chem C 117:4943–4950CrossRefGoogle Scholar
  12. 12.
    Clemens O, Rongeat C, Reddy MA, Giehr A, Fichtner M, Hahn H (2014) Electrochemical fluorination of perovskite type BaFeO2.5. Dalton Trans 43:15771–15778CrossRefGoogle Scholar
  13. 13.
    Rongeat C, Reddy MA, Diemant T, Behm RH, Fichtner M (2014) Development of new anode composite materials for fluoride ion batteries. J Mater Chem A 2:20861–20872CrossRefGoogle Scholar
  14. 14.
    Sorokin NI, Sobolev BP (2007) Nonstoichiometric fluorides–Solid electrolytes for electrochemical devices: A review. Crystallogr Rep 52:870–892CrossRefGoogle Scholar
  15. 15.
    Sorokin NI, Ivanovskaya NA, Sobolev BP (2014) Ionic conductivity of cold-pressed ceramics from grinding of R0.95M0.05F2.95 solid electrolytes (R = La, Nd; M = Ca, Sr, Ba) synthesized by reaction in melt. Crystallogr Rep 59:248–251CrossRefGoogle Scholar
  16. 16.
    Rongeat C, Reddy MA, Witter R, Fichtner M (2014) Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides. ACS Appl Mater Interfaces 6:2103–2110CrossRefGoogle Scholar
  17. 17.
    Tadanaga K, Egawa H, Hayashi A, Tatsumisago M, Mosa J, Aparicio M, Duran A (2015) Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. J Power Sources 273:844–847CrossRefGoogle Scholar
  18. 18.
    Inada R, Ishida K, Tojo M, Okada T, Tojo T, Sakurai Y (2015) Properties of aerosol deposited NASICON-type Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte thin films. Ceram Int 41:11136–11142CrossRefGoogle Scholar
  19. 19.
    Zhang L, Reddy MA, Fichtner M (2015) Development of tysonite-type fluoride conducting thin film electrolytes for fluoride ion batteries. Solid State Ionics 272:39–44CrossRefGoogle Scholar
  20. 20.
    Zhang L, Reddy MA, Gao P, Fichtner M (2016) Development of dense solid state thin-film electrolyte for fluoride ion batteries. J Alloy Compd 684:733–738CrossRefGoogle Scholar
  21. 21.
    Nowak S, Berkemeier F, Schmitz G (2015) Ultra-thin LiPON films–fundamental properties and application in solid state thin film model batteries. J Power Sources 275:144–150CrossRefGoogle Scholar
  22. 22.
    Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18:2226–2229CrossRefGoogle Scholar
  23. 23.
    Li L, Meng F, Jin S (2012) High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett 12:6030–6037CrossRefGoogle Scholar
  24. 24.
    Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Helmholtz Institute Ulm (HIU) for Electrochemical Energy StorageUlmGermany
  2. 2.Institute of Surface Chemistry and CatalysisUlm UniversityUlmGermany
  3. 3.Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT)Eggenstein-LeopoldshafenGermany

Personalised recommendations