Journal of Solid State Electrochemistry

, Volume 21, Issue 9, pp 2547–2553 | Cite as

Rapid hydrothermal synthesis of Li3VO4 with different favored facets

  • Yi Shi
  • Yi Zhang
  • Lili Liu
  • Zhijia Zhang
  • Jun Wang
  • Shulei Chou
  • Jie Gao
  • Héctor D. Abruña
  • Huijun Li
  • Huakun Liu
  • David Wexler
  • Jiazhao Wang
  • Yuping Wu
Original Paper
  • 479 Downloads

Abstract

Here, we demonstrate a new, rapid, and flexible hydrothermal method using the V2O5 and LiOH as the precursors to synthesize Li3VO4. The ratios of precursor of V2O5 and LiOH can be changed in a wide range to control different preferred facets and morphologies, and the reason has been discussed from the structure of Li3VO4. The electrical performance of the Li3VO4 has also been systematically investigated. The thus-synthesized Li3VO4 exhibits significantly improved rate capability and cycling life compared with commercial graphite, synthesized Li4Ti5O12, and previously reported results on Li3VO4.

Keywords

Li3VO4 Hydrothermal reaction Facets Battery Cycling performances 

References

  1. 1.
    Lin B, Yin Q, Hu H, Lu F, Xia H (2014) LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. J Solid State Chem 209:23–28CrossRefGoogle Scholar
  2. 2.
    Nair JR, Destro M, Bella F, Appetecchi GB, Gerbaldi C (2016) Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J Power Sources 306:258–267CrossRefGoogle Scholar
  3. 3.
    Porcarelli L, Gerbaldi C, Bella F, Jijeesh RN (2016) Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci Rep 6:19892 1-14CrossRefGoogle Scholar
  4. 4.
    Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 5:139–164CrossRefGoogle Scholar
  5. 5.
    Cui L, Yang Y, Hsu C, Cui Y (2009) Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9:3370–3374CrossRefGoogle Scholar
  6. 6.
    Bae J (2011) Fabrication of carbon microcapsules containing silicon nanoparticles–carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery. J Solid State Chem 184:1749–1755CrossRefGoogle Scholar
  7. 7.
    Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946CrossRefGoogle Scholar
  8. 8.
    Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X (2015) Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mater Interf 7:2280–2285CrossRefGoogle Scholar
  9. 9.
    Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y, Zhu K (2011) Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. Chem Commun 47:10058–10060CrossRefGoogle Scholar
  10. 10.
    Li H, Liu X, Zhai T, Li D, Zhou H (2012) Li3VO4: a promising insertion anode material for lithium-ion batteries. Adv Energy Mater 3:428–432CrossRefGoogle Scholar
  11. 11.
    Placke T, Siozios V, Schmitz R, Lux SF, Bieker P, Colle C, Meyer HW, Passerini S, Winter M (2012) Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries. J Power Sources 200:83–91CrossRefGoogle Scholar
  12. 12.
    Armstrong A, Lyness C, Panchmatia P, Islam M, Bruce P (2011) The lithium intercalation process in the low-voltage lithium battery anode Li1+ xV1− xO2. Nat Mater 10:223–229CrossRefGoogle Scholar
  13. 13.
    Malini R, Uma U, Sheela T, Ganesan M, Renganathan N (2009) Conversion reactions: a new pathway to realise energy in lithium-ion battery-review. Ionics 15:301–307CrossRefGoogle Scholar
  14. 14.
    Liu L, Tang W, Tian S, Shi Y, Wu Y (2011) LiV3O8 nanomaterial as anode with good cycling performance for aqueous rechargeable lithium batteries. Funct Mater Lett 4:315–318CrossRefGoogle Scholar
  15. 15.
    Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett 13:2036–2040CrossRefGoogle Scholar
  16. 16.
    Cui L, Ruffo R, Chan CK, Peng H, Cui Y (2008) Crystalline-amorphous core- shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495CrossRefGoogle Scholar
  17. 17.
    Kim H, Bak S, Kim K (2010) Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries. Electrochem Commun 12:1768–1771CrossRefGoogle Scholar
  18. 18.
    Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431–1435CrossRefGoogle Scholar
  19. 19.
    Chen J, Yang L, Fang S, Hirano SI, Tachibana K (2012) Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries. J Power Sources 200:59–66CrossRefGoogle Scholar
  20. 20.
    Song J, Park H, Kim K, Jo Y, Kim J, Jeong Y, Kim Y (2010) Electrochemical characteristics of lithium vanadate, Li1+ xVO2, new anode materials for lithium ion batteries. J Power Sources 195:6157–6161CrossRefGoogle Scholar
  21. 21.
    Kim W, Jeong Y, Choi H, Kim Y, Song J, Lee H, Lee Y (2011) New anode materials of Li1+ xV1− xO2 (0≤ x≤ 0.1) for secondary lithium batteries: correlation between structures and properties. J Appl Electrochem 41:803–808CrossRefGoogle Scholar
  22. 22.
    Shi Y, Wang J, Chou S, Wexler D, Li H, Ozawa K, Liu H, Wu Y (2013) Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett 13:4715–4720CrossRefGoogle Scholar
  23. 23.
    Kim W, Jeong Y, Lee Y, Kim Y, Song J (2013) Synthesis and lithium intercalation properties of Li3VO4 as a new anode material for secondary lithium batteries. J Power Sources 244:557–560CrossRefGoogle Scholar
  24. 24.
    Ke F, Huang L, Wei G, Xue L, Li J, Zhang B, Chen S, Fan X, Sun S (2009) One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim Acta 54:5825–5829CrossRefGoogle Scholar
  25. 25.
    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193CrossRefGoogle Scholar
  26. 26.
    Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG (2010) Crystal habit-tuned nanoplate material of Li[Li1/3–2×/3NixMn2/3–x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 22:4364–4367CrossRefGoogle Scholar
  27. 27.
    Shi Y, Gao J, Abruña H, Li H, Liu H, Wexler D, Wang J, Wu Y (2014) The mechanism of the one-step synthesis of hollow-structured Li3VO4 as an anode for lithium-ion batteries. Chem-Eur J 20:5608–5612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yi Shi
    • 1
    • 2
    • 3
    • 4
  • Yi Zhang
    • 1
  • Lili Liu
    • 2
  • Zhijia Zhang
    • 2
  • Jun Wang
    • 2
  • Shulei Chou
    • 2
  • Jie Gao
    • 3
  • Héctor D. Abruña
    • 3
  • Huijun Li
    • 4
  • Huakun Liu
    • 2
  • David Wexler
    • 4
  • Jiazhao Wang
    • 2
  • Yuping Wu
    • 1
  1. 1.College of Energy and Institute for Electrochemical Energy StorageNanjing Tech UniversityNanjingChina
  2. 2.Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongAustralia
  3. 3.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  4. 4.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations