Performance of asymmetric supercapacitor using CoCr-layered double hydroxide and reduced graphene-oxide

  • 757 Accesses

  • 12 Citations


Cobalt chromium-layered double hydroxides (CoCr-LDHs) were electrodeposited on to carbon paper by potentiostatic method from the respective cobalt and chromium ion sources. The electrodeposited CoCr-LDHs were characterized by x-ray diffraction (XRD), Fourier transferred infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), energy-dispersive x-ray analysis (EDX) and x-ray fluorescence (XRF) elemental mapping. The XRD and IR data confirmed that the deposits were CoCr-LDH with carbonate and nitrate ions in the basal space. The SEM observations confirmed that the CoCr-LDH surface had distinct morphology consisting of aggregate size of about 100 nm. For the first time, the supercapacitor characteristics of the CoCr-LDHs were assessed in three-electrode configuration in 1 M KOH or two-electrode (asymmetric capacitor device with reduced graphene-oxide (RGO)). It turned out that the asymmetric capacitor consisted of the CoCr-LDH and the RGO exhibited higher energy density with excellent power density. The higher energy density and power density of the asymmetric capacitor device is believed to be due to the unique LDH morphology in addition to the Faradaic and non-Faradaic contributions. It was demonstrated that the two asymmetric capacitor devices connected in series could light an LED bulb.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Press, New York

  2. 2.

    Hsu YK, Chen YC, Lin YG (2012) J Electroanal Chem 673:43–47

  3. 3.

    Fang DL, Chen ZD, Liu X, Wu ZF, Zheng CH (2012) J Electrochim Acta 81:321–329

  4. 4.

    Portet C, Taberna PL, Simon P, Flahaut E, Robert CL (2005) Electrochim Acta 50:4174–4181

  5. 5.

    Li W, Chen D, Li Z, Shi Y, Wan Y, Wang G, Jiang Z, Zhao D (2007) Carbon 45:1757–1763

  6. 6.

    Lee HC, Byamba-Ochir N, Shim WG, Balathanigaimani MS, Moon H (2015) J Power Sources 275:668–674

  7. 7.

    Tao XY, Zhang XB, Zhang L, Cheng JP, Liu F, Luo JH, Luo ZQ, Geise HJ (2006) Carbon 44:1425–1428

  8. 8.

    Wen S, Jung M, Joo OS, Mho SL (2006) Curr Appl Phys 6:1012–1015

  9. 9.

    Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) J Phys Chem C 113:13103–13107

  10. 10.

    Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Electrochem Commun 9:2315–2319

  11. 11.

    Cao L, Lu M, Li HL (2005) J Electrochem Soc 152:A871–A875

  12. 12.

    Ravinder Reddy N, Ramana Reddy G (2006) J Power Sources 156:700–704

  13. 13.

    Wang Z, Ma C, Wang H, Liu Z, Hao Z (2013) J Alloys Compd 552:486–491

  14. 14.

    Huang S, Zhu GN, Zhang C, Tjiu WW, Xia YY, Liu T (2012) ACS Appl Mater Interfaces 4:2242–2249

  15. 15.

    Guo X, Zhang F, Evans DG, Duan X (2010) Chem Commun 46:5197–5210

  16. 16.

    Wang J, You J, Li Z, Yang P, Jing X, Zhang M (2008) J Electroanalytical Chem 624:241–244

  17. 17.

    Wimalasiri Y, Fan R, Zhao XS, Zou L (2014) Electrochim Acta 134:127–135

  18. 18.

    Sim H, Jo C, Yu T, Lim E, Yoon S, Lee JH, Yoo J, Lee J, Lim B (2014) Chem Eur J 20:14880–14884

  19. 19.

    Woo MA, Song MS, Kim TW, Kim IY, Ju JY, Lee YS, Kim SJ, Choya JH, Hwang SJ (2011) J Mater Chem 21:4286–4292

  20. 20.

    Liu XM, Zhang YH, Zang XG, Fu SY (2004) Electrochim Acta 49:3137–3134

  21. 21.

    Lia M, Cheng JP, Wang J, Liua F, Zhang XB (2016) Electrochim Acta 206:108–115

  22. 22.

    Xu ZP, Li L, Cheng CY, Ding R, Zhou C (2013) Appl Clay Sci 74:102–108

  23. 23.

    Vinothbabu P, Elumalai P (2014) J Solid State Electrochem 19:813–820

  24. 24.

    Dixit M, Kamath PV (1995) J Power Sources 56:97–100

  25. 25.

    Song Y, Moon HS (1998) Clay Miner 33:285–296

  26. 26.

    Jaswal VS, Arora AK, Kinger M, Gupta VD, Singh J (2014) Orient J Chem 30:559–566

  27. 27.

    Vinothbabu P, Elumalai P (2014) RSC Adv 4:31219–31225

  28. 28.

    Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) Carbon 45:1686–1695

  29. 29.

    Zhao Y, Song X, Song Q, Yin Z (2012) Cryst Eng Comm 14:6710–6719

  30. 30.

    Karthikeyan K, Kalpana D, Amaresha S, Lee YS (2012) RSC Adv 2:12322–12328

  31. 31.

    Subramani K, Jeyakumar D, Sathish M (2014) Phys Chem Chem Phys 16:4952–4961

  32. 32.

    Hong W, Wang J, Li Z, Yang S (2015) Energy 93:435–441

  33. 33.

    Sun K, Peng H, Mu J, Ma G, Zhao G, Lei Z (2015) Ionics 21:2309–2317

  34. 34.

    Salunkhe RR, Tang J, Kamachi Y, Nakato T, Kim JH, Yamauchi Y (2015) ACS Nano 9:6288–6296

Download references


The authors acknowledge the central electrochemical research institute (CECRI), Karaikudi and central instrumentation facility (CIF) of Pondicherry University for Raman and SEM analysis. PE thanks CSIR, New Delhi, Govt. of India for the research scheme (01/2532/11/EMR-II).

Author information

Correspondence to Perumal Elumalai.

Electronic supplementary material

(MP4 134,180 kb)

(MP4 147,606 kb)


(DOCX 805 kb)


(JPEG 1123 kb)


(PNG 1038 kb)


(PNG 654 kb)


(PNG 755 kb)


(PNG 964 kb)


(PNG 519 kb)


(PNG 717 kb)


(MP4 134,180 kb)

ESM 10

(MP4 147,606 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiran, S.K., Padmini, M., Das, H.T. et al. Performance of asymmetric supercapacitor using CoCr-layered double hydroxide and reduced graphene-oxide. J Solid State Electrochem 21, 927–938 (2017).

Download citation


  • Energy storage
  • Supercapacitor
  • Layered double hydroxide
  • Asymmetric capacitor
  • Power density
  • Electrodeposition