Journal of Solid State Electrochemistry

, Volume 21, Issue 3, pp 859–872 | Cite as

Activated carbon derived from tree bark biomass with promising material properties for supercapacitors

  • Damilola Momodu
  • Moshawe Madito
  • Farshad Barzegar
  • Abdulhakeem Bello
  • Abubakar Khaleed
  • Okikiola Olaniyan
  • Julien Dangbegnon
  • Ncholu Manyala
Original Paper

Abstract

Activated carbon from tree bark (ACB) has been synthesized by a facile and environmentally friendly activation and carbonization process at different temperatures (600, 700 and 800 °C) using potassium hydroxide (KOH) pellets as an activation agent with different mass loading. The physicochemical and microstructural characteristics of the as-obtained material revealed interconnected microporous/mesoporous architecture with increasing trend in specific surface area (SSA) as carbonization temperatures rises. The SSA values of up to 1018 m2 g−1 and a high pore volume of 0.67 cm3 g−1 were obtained. The potential of the ACB material as suitable supercapacitor electrode was investigated in both a three and two-electrode configuration in different neutral aqueous electrolytes. The electrodes exhibited electric double-layer capacitor (EDLC) behaviour in all electrolytes with the Na2SO4 electrolyte working reversibly in both the negative (−0.80 V to −0.20 V) and positive (0.0 V to 0.6 V) operating potentials. A specific capacitance (Cs) of up to 191 F g−1 at a current density of 1 A g−1 was obtained for the optimized ACB electrode material in 1 M Na2SO4 electrolyte. A symmetric device fabricated exhibited specific Cs of 114 F g−1 at 0.3 A g−1 and excellent stability with a coulombic efficiency of a 100 % after 5000 constant charge–discharge cycles at 5.0 A g−1 and a low capacitance loss for a floating time of 70 h.

Graphical abstract

Keywords

Activated carbon Tree bark Biomass waste Supercapacitor Neutral electrolyte 

Supplementary material

10008_2016_3432_MOESM1_ESM.docx (8.2 mb)
Supporting Information 1(DOCX 8429 kb)

References

  1. 1.
    Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113CrossRefGoogle Scholar
  2. 2.
    Ghoniem AF (2011) Needs, resources and climate change: clean and efficient conversion technologies. Prog Energy Combust Sci 37:15–51CrossRefGoogle Scholar
  3. 3.
    Patel MR (2005) Wind and solar power systems: design, analysis, and operation. CRC PressGoogle Scholar
  4. 4.
    Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 329:1637–1639CrossRefGoogle Scholar
  5. 5.
    Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328:480–483CrossRefGoogle Scholar
  6. 6.
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22:827–834CrossRefGoogle Scholar
  7. 7.
    Daffos B, Taberna PL, Gogotsi Y, Simon P (2010) Recent advances in understanding the capacitive storage in microporous carbons. Fuel Cells 10:819–824CrossRefGoogle Scholar
  8. 8.
    Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46:1094–1103CrossRefGoogle Scholar
  9. 9.
    Miller JR, Burke AF (2008) Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc 17:53–57Google Scholar
  10. 10.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(2219–51):2283CrossRefGoogle Scholar
  11. 11.
    Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRefGoogle Scholar
  12. 12.
    Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565CrossRefGoogle Scholar
  13. 13.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  14. 14.
    Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795CrossRefGoogle Scholar
  15. 15.
    Chowdhury ZZ, Hamid SBA, Das R, Hasan MR, Zain SM, Khalid K, Uddin MN (2013) Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. Bioresources 8:6523–6555CrossRefGoogle Scholar
  16. 16.
    Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41:267–275CrossRefGoogle Scholar
  17. 17.
    Yang K, Peng J, Srinivasakannan C, Zhang H, Xia H, Duan X (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101:6163–6169CrossRefGoogle Scholar
  18. 18.
    Zhi M, Yang F, Meng F, Li M, Manivannan A, Wu NN (2014) Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tire effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tire. ACS Sustain Chem Eng 2:1592–1598CrossRefGoogle Scholar
  19. 19.
    Wei L, Yushin G (2011) Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon 49:4830–4838CrossRefGoogle Scholar
  20. 20.
    Stavropoulos GG, Zabaniotou AA (2009) Minimizing activated carbons production cost. Fuel Process Technol 90:952–957CrossRefGoogle Scholar
  21. 21.
    Divyashree A, Gurumurthy H (2015) Activated carbon nanospheres derived from bio- waste materials for supercapacitor applications—a review. RSC Adv 5:88339–88352CrossRefGoogle Scholar
  22. 22.
    Abbas Q, Pajak D, Frackowiak E, Beguin F (2014) Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochim Acta 140:132–138CrossRefGoogle Scholar
  23. 23.
    Hong MS, Lee SH, Kim SW (2002) Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem Solid-State Lett 5:A227CrossRefGoogle Scholar
  24. 24.
    Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48:4351–4361CrossRefGoogle Scholar
  25. 25.
    Zhang H, Zhang L, Chen J, Su H, Liu F, Yang W (2016) One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. J Power Sources 315:120–126CrossRefGoogle Scholar
  26. 26.
    Wang JG, Yang Y, Huang ZH, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 61:190–199CrossRefGoogle Scholar
  27. 27.
    Dyatkin B, Presser V, Heon M, Lukatskaya MR, Beidaghi M, Gogotsi Y (2013) Development of a green supercapacitor composed entirely of environmentally friendly materials. ChemSusChem 6:2269–2280CrossRefGoogle Scholar
  28. 28.
    Veeramani V, Madhu R, Chen SM, Veerakumar P, Syu JJ, Liu SB (2015) Cajeput tree bark derived activated carbon for the practical electrochemical detection of vanillin. New J Chem 39:9109–9115CrossRefGoogle Scholar
  29. 29.
    Koutcheiko S, Vorontsov V (2013) Activated carbon derived from wood biochar and its application in supercapacitors. J Biobased Mater Bioenergy 7:733–740CrossRefGoogle Scholar
  30. 30.
    Wang J, Song Y, Li Z, Liu Q, Zhou J, Jing X, Zhang M, Jiang Z (2010) In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuel 24:6463–6467CrossRefGoogle Scholar
  31. 31.
    Yang W, Gao Z, Wang J, Ma J, Zhang M, Liu L (2013) Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl Mater Interfaces 5:5443–5454CrossRefGoogle Scholar
  32. 32.
    Barzegar F, Bello A, Fashedemi OO, Dangbegnon JK, Momodu DY, Taghizadeh F, Manyala N (2015) Synthesis of 3D porous carbon based on cheap polymers and graphene foam for high-performance electrochemical capacitors. Electrochim Acta 180:442–450CrossRefGoogle Scholar
  33. 33.
    Sun H, He W, Zong C, Lu L (2013) Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials. ACS Appl Mater Interfaces 5:2261–2268CrossRefGoogle Scholar
  34. 34.
    Wei L, Tian K, Jin Y, Zhang X, Guo X (2016) Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous Mesoporous Mater 227:210–218CrossRefGoogle Scholar
  35. 35.
    Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230CrossRefGoogle Scholar
  36. 36.
    Bello A, Manyala N, Barzegar F, Khaleed AA, Momodu DY, Dangbegnon JK (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv 6:1800–1809CrossRefGoogle Scholar
  37. 37.
    Luo QP, Huang L, Gao X, Cheng Y, Yao B, Hu Z, Wan J, Xiao X, Zhou J (2015) Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Nanotechnology 26:304004CrossRefGoogle Scholar
  38. 38.
    Mao Y, Duan H, Xu B, Zhang L, Hu Y, Zhao C, Wang Z, Chen L, Yang Y (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950CrossRefGoogle Scholar
  39. 39.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRefGoogle Scholar
  40. 40.
    Malard LMM, Pimenta MAA, Dresselhaus G, Dresselhaus MSS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRefGoogle Scholar
  41. 41.
    Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563CrossRefGoogle Scholar
  42. 42.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565CrossRefGoogle Scholar
  43. 43.
    Sze SK, Siddique N, Sloan JJ, Escribano R (2001) Raman spectroscopic characterization of carbonaceous aerosols. Atmos Environ 35:561–568CrossRefGoogle Scholar
  44. 44.
    Dippel B, Jander H, Heintzenberg J (1999) NIR FT Raman spectroscopic study of flame soot. Phys Chem Chem Phys 1:4707–4712CrossRefGoogle Scholar
  45. 45.
    Yao L, Yang G, Han P, Tang Z, Yang J (2016) Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. J Power Sources 315:209–217CrossRefGoogle Scholar
  46. 46.
    Ofomaja AE, Naidoo EB (2011) Biosorption of copper from aqueous solution by chemically activated pine cone: a kinetic study. Chem Eng J 175:260–270CrossRefGoogle Scholar
  47. 47.
    Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z (2012) Carbon nanocages as supercapacitor electrode materials. Adv Mater 24:347–352CrossRefGoogle Scholar
  48. 48.
    Barzegar F, Momodu DY, Fashedemi OO, Bello A, Dangbegnon JK, Manyala N (2015) Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Adv 5:107482–107487CrossRefGoogle Scholar
  49. 49.
    Toupin M, Bélanger D, Hill IR, Quinn D (2005) Performance of experimental carbon blacks in aqueous supercapacitors. J Power Sources 140:203–210CrossRefGoogle Scholar
  50. 50.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRefGoogle Scholar
  51. 51.
    Zhang C, Hatzell KB, Boota M, Dyatkin B, Beidaghi M, Lng D, Qiao W, Kumbur EC, Gogotsi Y (2014) Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon 77:155–164CrossRefGoogle Scholar
  52. 52.
    Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375CrossRefGoogle Scholar
  53. 53.
    Randles JEB (1947) Kinetics of rapid electrode reactions. Discuss Faraday Soc 1:11–19CrossRefGoogle Scholar
  54. 54.
    Conway B (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic Publishers, Plenum Press, New YorkCrossRefGoogle Scholar
  55. 55.
    Bohlen O, Kowal J, Sauer DU (2007) Ageing behaviour of electrochemical double layer capacitors. Part I. Experimental study and ageing model. J Power Sources 172:468–475CrossRefGoogle Scholar
  56. 56.
    Bohlen O, Kowal J, Sauer DU (2007) Ageing behaviour of electrochemical double layer capacitors. Part II. Lifetime simulation model for dynamic applications. J Power Sources 173:626–632CrossRefGoogle Scholar
  57. 57.
    Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM, Dai S, Paranthaman MP, Naskar AK (2014) Studies on supercapacitor electrode material from activated lignin- derived mesoporous carbon. Langmuir 30:900–910CrossRefGoogle Scholar
  58. 58.
    Volperts A, Dobele G, Ozolins J, Mironova-Ulmane N (2015) Synthesis and application of nanoporous activated carbon in supercapacitors. Mater Sci Appl Chem 31:16CrossRefGoogle Scholar
  59. 59.
    Ferrero GA, Fuertes AB, Sevilla M (2015) From soybean residue to advanced supercapacitors. Sci Rep 5:16618CrossRefGoogle Scholar
  60. 60.
    Wu ZS, Ren W, Wang DW, Li F, Liu B, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842CrossRefGoogle Scholar
  61. 61.
    Wu FC, Tseng RL, Hu CC, Wang CC (2005) Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. J Power Sources 144:302–309CrossRefGoogle Scholar
  62. 62.
    Syarif N, Tribidasari I, Wibowo W (2013) Binder-less activated carbon electrode from gelam wood for use in supercapacitors. J Electrochem Sci Eng 3:37–45Google Scholar
  63. 63.
    Ratajczak P, Jurewicz K, Béguin F (2014) Factors contributing to ageing of high voltage carbon/carbon supercapacitors in salt aqueous electrolyte. J Appl Electrochem 44:475–480CrossRefGoogle Scholar
  64. 64.
    Zhang L, Wang J, Zhu J, Zhang X, San Hui K, Hui KN (2013) 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J Mater Chem A 1:904Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Damilola Momodu
    • 1
  • Moshawe Madito
    • 1
  • Farshad Barzegar
    • 1
  • Abdulhakeem Bello
    • 1
  • Abubakar Khaleed
    • 1
  • Okikiola Olaniyan
    • 1
  • Julien Dangbegnon
    • 1
  • Ncholu Manyala
    • 1
  1. 1.Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and MaterialsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations