Journal of Solid State Electrochemistry

, Volume 21, Issue 4, pp 947–954 | Cite as

Tetra-β-nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries

  • Yekang Wang
  • Jun Chen
  • Changcong Jiang
  • Nengwen Ding
  • Chunxiang Wang
  • Dong Li
  • Xiaolin Liu
  • Qian Zhang
  • Zhifeng Li
  • Shengwen Zhong
Original Paper


Tetra-β-nitro-substituted nickel phthalocyanine (TN-NiPc) and hollow phthalocyanine (TN-H2Pc) were synthesized and investigated as novel organic electrode materials for rechargeable lithium batteries. After the two H atoms in the center of TN-H2Pc were replaced with Ni atoms, the interactive force between the phthalocyanine rings was reduced, which resulted in a fluffy morphology for the TN-NiPc that was beneficial to the transition of Li+. As a result, better electrochemical properties and reversibility were observed in the TN-NiPc electrodes compared to the TN-H2Pc electrode. The capacity of TN-NiPc electrode was stable at about 280 mAh g−1 at 0.2 C after 250 cycles at several different current rates of 0.1, 0.2, 0.5, and 1 C. The TN-NiPc based cathode materials may provide new opportunities for organic, flexible, and stable secondary lithium batteries.

Graphical Abstract

The TN-NiPc electrode shows better electrochemical properties than that of TN-H 2 Pc electrode, which is due to the strong hydrogen bond interaction and π-π interaction of TN-H 2 Pc molecules, resulting in more dense stacking degree of the phthalocyanine ring and restricting the transport of Li+ .


Lithium-ion batteries Organic cathode material Phthalocyanine Nitro group Electrochemical performance 



The authors would like to express their sincere thanks to the National Natural Science Foundation of China (No. 51372104), the Science Research Project of Jiangxi Provincial Department of Education (No. GJJ150672), the Science and Technology Project of Jiangxi Province (Nos. 20161BAB213082, 20141BBE50019), and the College Students Innovation and Entrepreneurship Project (No. 3103800136).


  1. 1.
    Armand M, Tarascon JM (2008) Nature 451:652–657CrossRefGoogle Scholar
  2. 2.
    Song ZP, Zhan H, Zhou YH (2009) Chem Commun 449:448–450CrossRefGoogle Scholar
  3. 3.
    Scrosati B, Hassoun J, Sun Y (2011) Energy Environ Sci 4:3287–3295CrossRefGoogle Scholar
  4. 4.
    Goodenough JB, Kim Y (2010) Chem Mater 22:587–603CrossRefGoogle Scholar
  5. 5.
    Zhang LX, Liu ZH, Cui GL, Chen LQ (2015) Prog Polym Sci 43:136–164CrossRefGoogle Scholar
  6. 6.
    Chen H, Armand M, Demailly G, Dolhem F, Poizot P, Tarascon JM (2008) ChemSusChem 1:348–355CrossRefGoogle Scholar
  7. 7.
    Oltean VA, Renault S, Brandell D (2016) Electrochem Commun 68:45–48CrossRefGoogle Scholar
  8. 8.
    Cao R, Qian J, Zhang JG, Xu W (2015) Green Energy Technol 172:637–671CrossRefGoogle Scholar
  9. 9.
    Liang Y, Tao Z, Chen J (2012) Adv Energy Mater 2:742–769CrossRefGoogle Scholar
  10. 10.
    Song Z, Zhou H (2013) Energy Environ Sci 6:2280–2301CrossRefGoogle Scholar
  11. 11.
    Muhammed A, Burak E (2015) J Solid State Electrochem 19:2275–2281CrossRefGoogle Scholar
  12. 12.
    Deng Q, Xue J, Zou W, Wang L, Zhou A, Li J (2016) J Electroanal Chem 761:74–79CrossRefGoogle Scholar
  13. 13.
    Hu PF, Wang H, Yang Y, Yang J, Lin J, Guo L (2016) Adv Mater 28(18):3486CrossRefGoogle Scholar
  14. 14.
    Ahmad A, Wu HP, Guo YF, Meng QH, Meng YN, Lu K, Liu LW, Wei ZX (2016) RSC Adv 6:33287–33294CrossRefGoogle Scholar
  15. 15.
    Wang SW, Wang LJ, Zhang K, Zhu ZQ, Tao ZL, Chen J (2013) Nano Lett 13:4404–4409CrossRefGoogle Scholar
  16. 16.
    Luo C, Huang RM, Kevorkyants R, Pavanello M, He HX, Wang CS (2014) Nano Lett 14:1596–1602CrossRefGoogle Scholar
  17. 17.
    Renault S, Brandell D, Gustafsson T (2013) Chem Commun 49:1945–1947CrossRefGoogle Scholar
  18. 18.
    Huang JH, Yang ZH, Wang SQ, Feng ZB (2015) J Solid State Electrochem 19:723–730CrossRefGoogle Scholar
  19. 19.
    Chi TY, Li H, Li XW, Bao H, Wang GC (2013) Electrochim Acta 96:206–211CrossRefGoogle Scholar
  20. 20.
    Jin LF, Wang GC, Li XW, Li LB (2011) J Appl Electrochem 41:377–382CrossRefGoogle Scholar
  21. 21.
    Tobishima S, Yamaki J, Yamaji A (1984) J Electrochem Soc 131:57–63CrossRefGoogle Scholar
  22. 22.
    Nakahara K, Iwasa S, Satoh M (2002) Chem Phys Lett 359:351–354CrossRefGoogle Scholar
  23. 23.
    Chen J, Zhang Q, Zeng M, Ding NW, Li ZF, Zhong SW, Zhang T, Wang SQ, Yang GQ (2016) J Solid State Electrochem 20:1285–1294CrossRefGoogle Scholar
  24. 24.
    Chen J, Guo JK, Zhang T, Wang CX, Ding NW, Zhang Q, Yang H, Liu XL, Li D, Li ZF, Zhong SW, Wang SQ (2016) RSC Adv 6:52850–52853CrossRefGoogle Scholar
  25. 25.
    Chen J, Gan Q, Li SY, Gong FB, Wang Q, Yang ZP, Wang SQ, Xu HJ, Ma JS, Yang GQ (2009) J Photochem Photobiol A Chem 207:58–65CrossRefGoogle Scholar
  26. 26.
    Sharp JH, Abkowitz M (1973) J Phys Chem 77:477–481CrossRefGoogle Scholar
  27. 27.
    Ivanishchev AV, Churikov AV, Ivanishcheva IA (2008) Russ J Electrochem 44:510CrossRefGoogle Scholar
  28. 28.
    Ivanishchev AV, Churikov AV, Ivanishcheva IA (2016) Ionics 22:483CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yekang Wang
    • 1
  • Jun Chen
    • 1
  • Changcong Jiang
    • 1
  • Nengwen Ding
    • 1
  • Chunxiang Wang
    • 1
  • Dong Li
    • 1
  • Xiaolin Liu
    • 1
  • Qian Zhang
    • 1
  • Zhifeng Li
    • 1
  • Shengwen Zhong
    • 1
  1. 1.School of Materials Science and Engineering, Key Laboratory of Power Battery and MaterialsJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations