Journal of Solid State Electrochemistry

, Volume 21, Issue 2, pp 525–535 | Cite as

Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode

  • Guofu Ma
  • Jindan Li
  • Kanjun Sun
  • Hui Peng
  • Enke Feng
  • Ziqiang Lei
Original Paper


Nitrogen-doped porous activated carbons have been fabricated through a simple and efficient carbonization method at 700 °C with the waste tea-leaves as carbon precursor and ZnCl2 as activating agent. The average pore size and specific surface area are in the ranges of 2.3–6.6 nm and 10.3 ~ 1143.9 m2 g−1, with the ZnCl2 to tea-leaves weight ratio from 0 to 3. As an electrode material for supercapacitors, the TPACs-2 (the ZnCl2 to tea-leaves weight ratio is 2) which has 3.0 wt% nitrogen content, possesses a large specific capacitance of 296 F g−1 at 0.5 A g−1 and excellent rate capability (74 % retention at 10 A g−1) in 2 mol L−1 KOH. Furthermore, the symmetric supercapacitor fabricated with TPACs-2 electrodes delivers a high energy density of 13.5 Wh kg−1 at a power density of 221 W kg−1 and superior cycle stability (only 9 % loss after 5000 cycles), operating in the wide voltage range of 0–1.8 V in 0.5 mol L−1 Na2SO4 aqueous electrolyte. The results demonstrate TPACs-2 is a promising candidate for the electrode material of supercapacitors.


Activated carbon Tea-leaves Nitrogen-doped Chemical activation Supercapacitor 



This research was financially supported by the National Science Foundation of China (51462032), the program for Changjiang Scholars and Innovative Research Team in University (IRT15R56), the China Postdoctoral Science Foundation (2013 M540778), Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University) of Ministry of Education, and Key Laboratory of Polymer Materials of Gansu Province.


  1. 1.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRefGoogle Scholar
  2. 2.
    Merlet C, Péan C, Rotenberg B, Madden PA, Daffos B, Taberna P-L, Simon P, Salanne M (2013) Highly confined ions store charge more efficiently in supercapacitors. Nat Commun. doi: 10.1038/ncomms3701 Google Scholar
  3. 3.
    Zhang SL, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5:1–19Google Scholar
  4. 4.
    Su DS, Schlogl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3:136–168CrossRefGoogle Scholar
  5. 5.
    Zhong C, Deng YD, Wab H, JL Q, Zhang L, JJ Z (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539CrossRefGoogle Scholar
  6. 6.
    Yan J, Wang Q, Wei T, Fan ZJ (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1–43Google Scholar
  7. 7.
    GP W, Zhang L, JJ Z (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  8. 8.
    Chen Z, Yuan Y, HH Z, XL W, ZH G, FS W, YF L (2014) 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv Mater 26:339–345CrossRefGoogle Scholar
  9. 9.
    Bae J, Song MK, Park YJ, Kim JM, Liu ML, Wang ZL (2011) Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed 50:1683–1687CrossRefGoogle Scholar
  10. 10.
    Yun Y, Cho S, Shim J, Kim B, Chang S, Baek SJ, Huh YS, Tak YS, Park YW, Park S, Jin HJ (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25:1993–1998CrossRefGoogle Scholar
  11. 11.
    Zhang L, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  12. 12.
    Wang YQ, Yuan AB, Wang XL (2008) Pseudocapacitive behaviors of nanostructured manganese dioxide/carbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors. J Solid State Electrochem 12:1101–1107CrossRefGoogle Scholar
  13. 13.
    Huang HS, Chang KH, Suzuki N, Yamauchi Y, Hu CC, Wu KCW (2013) Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. Small 9:2520–2526CrossRefGoogle Scholar
  14. 14.
    Bastakoti BP, Kamachi Y, Huang HS, Chen LC, Wu KCW, Yamauchi Y (2013) Hydrothermal synthesis of binary Ni–Co hydroxides and carbonate hydroxides as pseudosupercapacitors. Eur J Inorg Chem 2013:39–43CrossRefGoogle Scholar
  15. 15.
    Wang B, Park J, Su DW, Wang CY, Ahn H, Wang GX (2012) Solvothermal synthesis of CoS2–graphene nanocomposite material for high-performance supercapacitors. J Mater Chem 22:15750–15756CrossRefGoogle Scholar
  16. 16.
    Rosario-Canales MR, Deria P, Therien MJ, Santiago-Aviles JJ (2012) Composite electronic materials based on poly(3,4-propylenedioxythiophene) and highly charged poly(aryleneethynylene)-wrapped carbon nanotubes for supercapacitors. ACS Appl Mater Interface 4:102–109CrossRefGoogle Scholar
  17. 17.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  18. 18.
    Kierzek K, Frackowiak E, Lota G, Gryglewicz G, Machnikowski J (2004) Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim Acta 49:515–523CrossRefGoogle Scholar
  19. 19.
    Chaikittisicp W, Hu M, Wang HJ, Huang HS, Fujita T, Wu KCW, Chen LC, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261CrossRefGoogle Scholar
  20. 20.
    Bastakoti BP, Oveisi H, Hu CC, Wu KCW, Suzuki N, Takai K, Kamachi Y, Imura M, Yamauchi Y (2013) Mesoporous carbon incorporated with In2O3 nanoparticles as high-performance supercapacitors. Eur J Inorg Chem 2013:1109–1112CrossRefGoogle Scholar
  21. 21.
    Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN (2008) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8:2664–2668CrossRefGoogle Scholar
  22. 22.
    Salunkhe RR, Hsu SH, Wu KCW, Yamauchi Y (2014) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 7:1551–1556CrossRefGoogle Scholar
  23. 23.
    Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822CrossRefGoogle Scholar
  24. 24.
    Wang JC, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725CrossRefGoogle Scholar
  25. 25.
    Wang RT, Wang PY, Yan XB, Lang JW, Peng C, Xue QJ (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800–5806CrossRefGoogle Scholar
  26. 26.
    Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249–1259CrossRefGoogle Scholar
  27. 27.
    Balathanigaimani MS, Shim WG, Lee MJ, Kim C, Lee JW, Moon H (2008) Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochem Commun 10:868–871CrossRefGoogle Scholar
  28. 28.
    Li X, Xing W, Zhuo SP, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123CrossRefGoogle Scholar
  29. 29.
    Chen CN, Liang CM, Lai JR, Tsai YJ, Tsay JS, Lin JK (2003) Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration. J Agric Food Chem 51:7495–7503CrossRefGoogle Scholar
  30. 30.
    Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta A 99:102–109CrossRefGoogle Scholar
  31. 31.
    Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839–2855CrossRefGoogle Scholar
  32. 32.
    Peng H, Ma GF, Sun KJ, JJ M, Lei ZQ (2014) Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application. ACS Appl Mater Interface 6:20795–20803CrossRefGoogle Scholar
  33. 33.
    Jin YZ, Gao C, Hsu WK, Zhu YQ, Huczko A, Bystrzejewski M, Roe M, Lee CY, Acquah S, Kroto H, Walton DRM (2005) Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon 43:1944–1953CrossRefGoogle Scholar
  34. 34.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRefGoogle Scholar
  35. 35.
    Wang Y, Zhang L, Wang H, Wang J, Yu W, Peng B, Yang Z, Chai L (2014) Sustainable synthesis of penicillium-derived highly conductive carbon film as superior binder-free electrode of lithium ion batteries. J Solid State Electrochem 18:3209–3214Google Scholar
  36. 36.
    Peng H, Ma GF, Sun KJ, Mu JJ, Lei ZQ (2014) One-step preparation of ultrathin nitrogen-doped carbon nanosheets with ultrahigh pore volume for high-performance supercapacitors. J Mater Chem A 2:17297–17301CrossRefGoogle Scholar
  37. 37.
    He ZW, Lü QF, Lin QL (2013) Fabrication, characterization and application of nitrogen-containing carbon nanospheres obtained by pyrolysis of lignosulfonate/poly(2-ethylaniline). Bioresour Technol 127:66–71CrossRefGoogle Scholar
  38. 38.
    Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447CrossRefGoogle Scholar
  39. 39.
    Usachov D, Vilkov O, Gruneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11:5401–5407CrossRefGoogle Scholar
  40. 40.
    Wang SP, Zhang JN, Shang P, Li YY, Chen ZM, Xu Q (2014) N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chem Commun 50:12091–12094CrossRefGoogle Scholar
  41. 41.
    Hao L, Li XL, Zhi LJ (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904CrossRefGoogle Scholar
  42. 42.
    Burton Z, Bhushan B (2005) Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett 5:1607–1613CrossRefGoogle Scholar
  43. 43.
    Tan YM, Xu CF, Chen GX, Liu ZH, Ma M, Xie QJ, Zheng NF, Yao SZ (2013) Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl Mater Interfaces 5:2241–2248CrossRefGoogle Scholar
  44. 44.
    Fan W, Xia YY, Tjiu WW, Pallathadka PK, He CB, Liu TX (2013) Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. J Power Sources 24:973–981CrossRefGoogle Scholar
  45. 45.
    Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518CrossRefGoogle Scholar
  46. 46.
    Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv Funct Mater 19:1800–1809CrossRefGoogle Scholar
  47. 47.
    Wang Q, Yan J, Wang YB, Wei T, Zhang ML, Jing XY, Fan ZJ (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRefGoogle Scholar
  48. 48.
    Demarconnay L, Raymundo-Pinero E, Béguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun 12:1275–1278CrossRefGoogle Scholar
  49. 49.
    Hu CC, Chu CH (2001) Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors—effects of film coverage/thickness and anions. J Electroanal Chem 503:105–116CrossRefGoogle Scholar
  50. 50.
    Chang J, Jin MH, Yao F, Kim TH, Le VT, Yue HY, Gunes F, Li B, Ghosh A, Xie SS, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.College of Chemistry and Environmental ScienceLanzhou City UniversityLanzhouChina

Personalised recommendations