Journal of Solid State Electrochemistry

, Volume 20, Issue 12, pp 3287–3302 | Cite as

Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment

  • Annette S. Ortiz-Miranda
  • Antonio Doménech-Carbó
  • María Teresa Doménech-Carbó
  • Laura Osete-Cortina
  • Francisco M. Valle-Algarra
  • Fernando Bolívar-Galiano
  • Inés Martín-Sánchez
  • María del Mar López-Miras
Original Paper

Abstract

The voltammetry of microparticles (VMP) methodology was used to characterize the biological attack of different bacteria and fungi to reconstructed egg tempera and egg–linseed oil emulsion paint films containing cadmium yellow (CdS), which mimic historical painting techniques. When these paint films are in contact with aqueous acetate buffer, different cathodic signals are observed. As a result of the crossing of VMP data with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electrochemical microscopy (SECM), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM), these voltammetric signals can be associated with the reduction of CdS and different complexes associated to the proteinaceous and fatty acid fractions of the binders. After biological attack with different fungi (Acremonium chrysogenum, Aspergillus niger, Mucor rouxii, Penicillium chrysogenum, and Trichoderma pseudokoningii) and bacteria (Arthrobacter oxydans, Bacillus amyloliquefaciens, and Streptomyces cellulofans), the observed electrochemical signals experience specific modifications depending on the binder and the biological agent, allowing for an electrochemical monitoring of biological attack.

Keywords

Electrochemistry Biodeterioration Cadmium sulfide Egg tempera Egg–oil emulsion FTIR 

Notes

Acknowledgments

This work has been performed by members of the microcluster Grupo de análisis científico de bienes culturales y patrimoniales y estudios de ciencia de la conservación (Ref. 1362) belonging to the Valencia International Campus of Excellence. Financial support is gratefully acknowledged from the Spanish “I+D+I MICINN” projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P supported by ERDF funds. The authors wish to thank Dr. José Luis Moya López and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politècnica de València) for the technical support.

References

  1. 1.
    Ratledge C (1994) Biochemistry of microbial degradation. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Caneva G, Nugari MP, Salvadori O (2008) Plant biology for cultural heritage, the Getty Conservation Institute, Los AngelesGoogle Scholar
  3. 3.
    Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 47–55 and references thereinGoogle Scholar
  4. 4.
    Gargani G (1968) Fungus contamination of Florence art masterpieces before and after the 1966 disaster. In: Walters AH, Elphick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp. 252–257Google Scholar
  5. 5.
    Seves AM, Sora S, Ciferr O (1996) The microbial colonization of oil paintings—a laboratory investigation. Int Biodeter Biodegr. 37:215–224CrossRefGoogle Scholar
  6. 6.
    Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. University of LisbonGoogle Scholar
  7. 7.
    Strzelczyk AB (2004) Observations on aesthetic and structural changes induced in polish historic objects by microorganisms. Int Biodeter Biodegr. 53:151–156CrossRefGoogle Scholar
  8. 8.
    López-Miras M, Piñar G, Romero-Noguera J, Bolivar-Galiano FC, Ettenauer J, Sterflinger K, Martín-Sánchez I (2013) Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29:301–314CrossRefGoogle Scholar
  9. 9.
    Koszewski A, Rymuza Z, Reuther F (2008) Evaluation of nanomechanical, nanotribological and adhesive properties of ultrathin polymer resist film by AFM. Micro Engn 85:1189–1192CrossRefGoogle Scholar
  10. 10.
    Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S (2001) An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol Meth 45:77–87CrossRefGoogle Scholar
  11. 11.
    Florian MLE (1996) The role of the conidia of fungi in fox spots. Stud Conserv 41:65–75Google Scholar
  12. 12.
    Arai H, Matsui N, Matsumura N, Murakita H (1988) Biochemical investigations on the formation mechanisms of foxing. Stud Conserv 33:11–12CrossRefGoogle Scholar
  13. 13.
    Arai H, Matsumura N, Murakita H (1990) Microbiological studies on the conservation of paper and related cultural properties: part 9, induction of artificial foxing. Science for Conservation 29:25–34Google Scholar
  14. 14.
    Hayashi T, Namili M (1986) Role of sugar fragmentation in early stage browning of amino-carbonyl reaction of sugars with amino acids. Agr Biol Chem Tokyo 50:1965–1970Google Scholar
  15. 15.
    Allsopp D, Seal KJ, Gaylarde CC (2004) Introduction to biodeterioration, 2 edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. 16.
    Bock E, Sand W (1993) The microbiology of masonry biodeterioration. J Appl Bacteriol 74:503–514Google Scholar
  17. 17.
    Ciferri O (2002) The role of microorganisms in the degradation of cultural heritage. Rev Conserv 3:35–45Google Scholar
  18. 18.
    Van der Snickt G, Dik J, Cotte M, Janssens K, Jaroszewicz J, De Wolf W, Groenewegen J, Van der Loeff L (2009) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal Chem 81:2600–2610CrossRefGoogle Scholar
  19. 19.
    Child AM (1995) Microbial taphonomy of archaeological bone. Stud Conserv 40:19–30Google Scholar
  20. 20.
    Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42(2007):1090–1100CrossRefGoogle Scholar
  21. 21.
    Kinderlerer JL (1994) Degradation of the lauric acid oils. Int Biodeter Biodegr 33(1994):345–354CrossRefGoogle Scholar
  22. 22.
    van den Berg JDJ, van den Berg KJ, Boon JJ (2002) Identification of non-cross-linked compounds in methanolic extracts of cured and aged linseed oil-based paint films using gas chromatography-mass spectrometry. J Chromatogr A 950:195–211 and references thereinCrossRefGoogle Scholar
  23. 23.
    Lefèvre M (1974) La ‘maladie verte’ de Lascaux. Stud Conserv 19:126–156Google Scholar
  24. 24.
    Petushkova JP, Lyalikova NN (1986) Microbiological degradation of lead-containing pigments in mural paintings. Stud Conserv 31:65–69Google Scholar
  25. 25.
    Breitbach AM, Rocha JC, Gaylarde CC (2011) Influence of pigment on biodeterioration of acrylic paint films in southern Brazil. J Coat Technol Res 8:619–628CrossRefGoogle Scholar
  26. 26.
    Keune K, van Loon A, Boon JJ (2011) SEM backscattered-electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Microsc Microanal 17:696–701CrossRefGoogle Scholar
  27. 27.
    Meilunas RJ, Bentsen JG, Steinberg A (1990) Analysis of aged paint binders by FTIR spectroscopy. Stud Conserv 35:33–51Google Scholar
  28. 28.
    Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M (2008) Attenuated total reflection micro FTIR characterization of pigment–binder interaction in reconstructed paint films. Anal Bioanal Chem 392:65–76CrossRefGoogle Scholar
  29. 29.
    Salvadó N, Butí S, Nicholson J, Emerich H, Labrador A, Pradell T (2009) Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta 79:419–428CrossRefGoogle Scholar
  30. 30.
    Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem 20:1–86Google Scholar
  31. 31.
    Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and Dropletst, 2 edn. Springer, Berlin-HeidelbergGoogle Scholar
  32. 32.
    Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report). Pure Appl Chem 85:609–631Google Scholar
  33. 33.
    Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods for Archaeometry, conservation and restoration (monographs in electrochemistry series Scholz F edit). Springer, Berlin-HeidelbergCrossRefGoogle Scholar
  34. 34.
    Doménech-Carbó A (2010) Electrochemistry for conservation science. J Solid State Electr 14:349–351CrossRefGoogle Scholar
  35. 35.
    Matteini M, Moles A (1989) La Chimica nel Restauro. Nardini, FirenzeGoogle Scholar
  36. 36.
    Gettens RJ, Stout GL (1966) Painting materials. A short encyclopedia. Dover Publications, New YorkGoogle Scholar
  37. 37.
    Cennini C (1982) Il libro dell’ arte. Akal, MadridGoogle Scholar
  38. 38.
    Cepriá G, García-Gareta E, Pérez-Arantegui J (2005) Cadmium yellow detection and quantification by voltammetry of immobilized microparticles. Electroanalysis 17:1078–1084CrossRefGoogle Scholar
  39. 39.
    Domínguez I, Doménech-Carbó A, Cerisuelo JP, López-Carballo G, Henández-Muñoz P, Gavara R (2014) Contact probe electrochemical characterization and metal speciation of silver LLDPE nanocomposite films. J Solid State Electrochem 18:2099–2110CrossRefGoogle Scholar
  40. 40.
    Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487CrossRefGoogle Scholar
  41. 41.
    Chang CM, Powrie WD, Fennema O (1977) Microstructure of egg yolk. J Food Sci 42:1193–1200CrossRefGoogle Scholar
  42. 42.
    Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671CrossRefGoogle Scholar
  43. 43.
    Boehm S, Abaturov LV (1977) Structural changes of met-haemoglobin by dehydration. FEBS Lett 77:21–24CrossRefGoogle Scholar
  44. 44.
    Karpowicz A (1981) Ageing and deterioration of proteinaceous media. Stud Conserv 26:153–160Google Scholar
  45. 45.
    Koper A, Grabarczyk M (2012) Simultaneous voltammetric determination of trace bismuth(III) and cadmium(II) in water samples by adsorptive stripping voltammetry in the presence of cupferron. J Electroanal Chem 681:1–5CrossRefGoogle Scholar
  46. 46.
    Zakharchuk N, Meyer S, Lange B, Scholz F (2000) A comparative study of lead oxide modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized lead oxides. Croat Chem Acta 73:667–704Google Scholar
  47. 47.
    Komorsky-Lovric S, Lovric M, Bond AM (1992) Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Anal Chim Acta 258:299–305CrossRefGoogle Scholar
  48. 48.
    Arjmand F, Adriaens A (2012) Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem 16:535–543CrossRefGoogle Scholar
  49. 49.
    Meyer B, Ziemer B, Scholz F (1995) In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J Electroanal Chem 392:79–83CrossRefGoogle Scholar
  50. 50.
    Hasse U, Scholz F (2001) In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochem Commun 3:429–434CrossRefGoogle Scholar
  51. 51.
    Doménech-Carbó A, Doménech-Carbó MT, Mas-Barberá X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579CrossRefGoogle Scholar
  52. 52.
    Eissler RL, Princen RH (1972) The interface between reactive pigment and binder matrix. J Electroanal Chem 37:327–336CrossRefGoogle Scholar
  53. 53.
    Kuznetsov AM, Ulstrup J (1989) Protein dynamics and electronic fluctuation effects in electron transfer reactions of membrane-bound proteins and metalloprotein complexes. J Electroanal Chem 275:289–305CrossRefGoogle Scholar
  54. 54.
    Colletti LP, Teklay D, Stickney JL (1994) Thin-layer electrochemical studies of the oxidative underpotential deposition of sulfur and its application to the electrochemical atomic layer epitaxy deposition of CdS. J Electroanal Chem 369:145–152CrossRefGoogle Scholar
  55. 55.
    Gulaboski R, Mirceski V, Bogeski I, Hoth M (2012) Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J Solid State Electrochem 16:2315–2328CrossRefGoogle Scholar
  56. 56.
    Guidelli R, Becucci L (2011) Ion transport across biomembranes and model membranes. J Solid State Electrochem 15:1459–1470CrossRefGoogle Scholar
  57. 57.
    Sutherland K (2003) Solvent-extractable components of linseed oil paint films. Stud Conserv 48:111–135CrossRefGoogle Scholar
  58. 58.
    Rossi M, Alamprese C, Ratti S (2007) Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem 102:812–817CrossRefGoogle Scholar
  59. 59.
    Ziyatdinova G, Morozov M, Budnikov H (2012) MWNT-modified electrodes for voltammetric determination of lipophilic vitamins. J Solid State Electrochem 16:2441–2447CrossRefGoogle Scholar
  60. 60.
    Madani A, Nessark B, Boukherroub R, Chehimi MM (2011) Preparation and electrochemical behaviour of PPy–CdS composite films. J Electroanal Chem 650:176–181CrossRefGoogle Scholar
  61. 61.
    Derrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los AngelesGoogle Scholar
  62. 62.
    van der Weerd J, van Loon A, Boon JJ (2005) FTIR studies of the effects of pigments on the aging of oil. Stud Conserv 50:3–22CrossRefGoogle Scholar
  63. 63.
    Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Bioch Bioph Sin 39:549–559CrossRefGoogle Scholar
  64. 64.
    Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B-Enzym 7:207–221CrossRefGoogle Scholar
  65. 65.
    Furlan PY, Scott SA, Peaslee MH (2007) FTIR-ATR study of pH effects on egg albumin secondary structure. Spectrosc Lett 40:475–482CrossRefGoogle Scholar
  66. 66.
    Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry-US 29:3303–3308CrossRefGoogle Scholar
  67. 67.
    Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X (2012) Structure and biodegradation mechanism of milled B. mori silk particles. Biomacromolecules 13:2503–2512CrossRefGoogle Scholar
  68. 68.
    Anton M (2013) Egg yolk: structures, functionalities and processes. J Sci Food Agr 93:2871–2880CrossRefGoogle Scholar
  69. 69.
    Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488:189–210CrossRefGoogle Scholar
  70. 70.
    Kumpula LS, Kumpula JM, Taskinen MR, Jauhiainen M, Kaski K, Ala-Korpela M (2008) Reconsideration of hydrophobic lipid distributions in lipoprotein particles. Chem Phys Lipids 155:57–62 and references thereinCrossRefGoogle Scholar
  71. 71.
    Schneider H, Morrod RS, Colvin JR, Tattrie NH (1973) The lipid core model of lipoproteins. Chem Phys Lipids 10:328–353CrossRefGoogle Scholar
  72. 72.
    Doménech-Carbó MT, Osete-Cortina L, de la Cruz-Cañizares J, Bolívar-Galiano F, Romero-Noguera J, Martín-Sánchez I, Fernández-Vivas MA (2006) Study of the microbiodegradation of terpenoid resin-based varnishes from easel painting using pirolisis-gas chromatography-mass spectrometry and gas chromatography-mass spectrometry. Anal Bioanal Chem 385:1265–1280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Annette S. Ortiz-Miranda
    • 1
  • Antonio Doménech-Carbó
    • 2
  • María Teresa Doménech-Carbó
    • 1
  • Laura Osete-Cortina
    • 1
  • Francisco M. Valle-Algarra
    • 2
  • Fernando Bolívar-Galiano
    • 3
  • Inés Martín-Sánchez
    • 4
  • María del Mar López-Miras
    • 3
  1. 1.Institut de Restauració del PatrimoniUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Departament de Química AnalíticaUniversitat de ValènciaBurjassot, ValènciaSpain
  3. 3.Departamento de PinturaUniversidad de GranadaGranadaSpain
  4. 4.Departamento de MicrobiologíaUniversidad de GranadaGranadaSpain

Personalised recommendations